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Abstract

The most common application of ultrasonic testing in civil engineering is to determine the 

velocity of sound in concrete, which is related to concrete quality. This thesis addresses 

some of the limitations of current commercial apparatus used for determining ultrasonic 

pulse velocity in concrete. The intention is to recommend improvements to enhance the 

reliability of measurements and make application more convenient. 

The velocity of sound in concrete measured by commercial apparatus is known to vary with 

the path length being tested. Attenuation of sound in concrete, commercial transducer 

characteristics, and determination of signal transit times have been investigated. From this 

study, a function has been derived to correct measurement errors. 

Commercial equipment is calibrated by coupling the transducers to a reference bar and 

setting the apparatus display to a time value stamped on the bar. To validate the time value, 

an experimental and finite element study have been carried out on wave propagation in a 

finite length of bar. To aid interpretation of data, signal-processing techniques have been 

investigated that are suitable for the evaluation of wave velocities in dispersive systems. 

Results suggest that the time value corresponds to a relatively low energy component 

propagating at the longitudinal bulk wave velocity. Reliable calibration can be achieved 

when the apparatus recognises the component, which is dependent on the acoustic coupling 

made by the transducers to the reference bar. 

Currently, viscous couplant must be applied between the transducer face and the concrete 

surface under test to facilitate signal transmission. Consistent coupling is difficult to achieve 

and couplant application and removal proves time consuming and inconvenient. Alternative 

coupling has been investigated; one technique that looks promising is rubber coupling. 

Contact models have been derived to predict the deformations of rubber coupled devices 

when loaded onto rough surfaces and thereby predict signal transmission. Experiments and 

predictions suggest that dry rubber coupling of transducers using a hand held device might 

not be feasible. However, more convenient coupling has been achieved when wetting a 

prototype rubber coupled membrane device with very little water. 
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Nomenclature 

A   Wave amplitude, area, coefficient 

a  Radius, scale 

b  Constant, translation, radius  

B  Calibration constant 

c  Wave speed, overlap ratio 

c  Elastic coefficient matrix 

cij  Elastic constant 

C  Constant of integration 

Cv  Constant volume function 

CA  Contact area 

d  Diameter, differential operator 

D  Diameter, flexural rigidity 

DN  Large displacement flexural rigidity 

E  2.71828... (ln(e)=1) 

E  Youngs’ Modulus 

f  Frequency (Hertz) 

F  Total load 

F(n,m)  Flexural mode 

f(t), g(t)  Time domain functions 

F(f), G( ) Frequency domain functions 

g  Surface profile 

G  Maximum surface amplitude 

h  Thickness 

i 1 , integer 

I(r, b)  Influence coefficients 

j  Integer 

k  Wave number 

k(r)  Finite thickness correction factor 

L  Path length 

L(n,m)  Longitudinal mode 

m  Integer, ratio 

md  Dimple ratio 
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n  Integer 

N  Near field distance, integer, tension component 

p  Pressure 

P  Wave amplitude 

q  Intensity 

r  Radius, integer 

Ra  Centre line average 

Rn  Random number 

s  Arc length, integer 

S  Stiffness 

S  Stress tensor 

Sxy  Strain vector 

t  Time 

  Dummy time variable 

T  Stress tensor 

T  Transmission ratio 

Txy  Stress vector 

u  Displacement 

x, y, z  Cartesian co-ordinate axis 

x1, y2,   Cartesian co-ordinates axis 

u  Displacement vector 

vph  Phase velocity 

vgr  Group velocity 

V  Volts 

w  Surface displacement, rotation 

w   Overlap function   

w  Rotation vector 

W  Load 

W Wavelet transform coefficient 

z  Pulse propagation distance 

Z  Acoustic impedance 
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  Attenuation coefficient (Nepers/m), radial wave number, angle, contact ratio 

  Wave number, correction factor 
*  Correlation length 

  Partial deferential operator 

  Coefficient, axial wave number 

  Time constant 

  Infinity 

  Wavelength, Lamés constant 

µ  Lamés constant 

  Coefficient 

  Frequency (Radian/s) 

Phase, probability function  

(t)  Wavelet function 

3.141592....

  Density 

Standard deviation 

m  Surface slope 

  Angle 

  Poisson’s ratio 

  Coefficient 

  Accumulative probability distribution  

  Interface displacement, dilation 

  Vector differential operator  

2  Laplace operator 
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Chapter 1 

Introduction 

1.1 Introduction 

Concrete is a complex composite material having a wide variety of specifications. Useful 

background information on concrete constituents and properties can be found in text given 

by [Mindess and Young (1981)] and [Neville (1996)]. Should you wish to lay a patio in your 

back garden or perhaps build a bridge over the Thames or a skyscraper in Manhattan, you 

may well consider mixing yourself up a batch of concrete. Take one bucket of cement, two 

buckets of sand and three buckets of graded aggregate to bulk out the volume and reduce 

shrinkage. You will also require about 1/2 to 3/4 bucket of water depending on the strength 

desired, and a squeeze of plasticiser to make the mixture more workable. Mix well and pour 

into a mould of desired shape, compact, and allow to set. Concrete reaches half its strength 

after about 3 days and 90% after 28 days. What you have is a very versatile, potentially 

durable composite material, that is strong in compression but about 90% weaker in tension 

such that structural members subject to tensile stress are reinforced with steel bars. The 

setting of concrete is not a drying out process but a chemical reaction called hydration, 

where the calcium silicates in the cement react with the water to form hydrates and is 

accompanied by the evolution of heat. In the early stages of hydration, water rises and 

aggregate settles, such that the surface concrete is not representative of the overall volume. 

The structure of the cement hydrate to a large extent determines the durability of the 

concrete. There are inherent pores of a few nm, and pores 50 to 100 times larger as a result 

of the presence of excess water above that required to complete hydration. Additionally there 

may be air pockets or volumes of lower density due to inadequate compaction. It is also 

likely that all concrete has an extensive crack system induced by shrinkage, thermal 

movements, loading and a number of other causes. 

Concrete in service is exposed to a wide variety of environments and, because of its physical 

and chemical nature, may deteriorate as a result [Perkins (1997)]. The pores and the crack 

system provide passage ways by which acidic moisture and gases that attack the alkaline 

concrete can penetrate. Once deterioration is apparent, its classification and extent need to be 

appraised so that appropriate remedial action can be specified.  
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Routine testing of concrete is primarily concerned with assessing current adequacy and 

future performance [Bungey and Millard (1996)]. An initial visual inspection of the site can 

prove valuable in locating deterioration and aid the choice of an appropriate method of test. 

If you had walked around under the Hammersmith flyover in West London UK in the late 

1990s then you may well have noticed the cracking, spalling and brown stains that indicate 

reinforcement corrosion on the supporting columns. You might also have noticed where 

appropriate remedial action had not taken place, such that the surface of the deteriorating 

concrete dislocated and fell off exposing the reinforcement to the atmosphere. 

There are several diverse techniques for inspecting concrete in-situ quality or integrity for 

which detailed references are given in Chapter 2. Each technique has its own particular 

advantages and limitations, there being no universal panacea. Concrete quality is often 

assessed by determining concrete strength. The most reliable methods are those that cause 

the most damage, such as the taking and crushing of cores, and the pull-out (requiring pre-

planned inserts to be set in structure) and pull-off tests. Methods that cause little or no 

surface damage are most suitable for establishing  comparative quality since correlation of 

results to strength is empirical and often unreliable. Ultrasonic pulse velocity measurements 

in concrete is a well established non-destructive technique. Low frequency narrow band 

transducers are grease coupled to the structure. The time taken for a pulse to propagate 

through the material gives the velocity of sound, which is related to concrete quality. Low 

velocity might signify deterioration or presence of a void since the pulse would have to 

defract around this, and higher velocities may infer damp concrete. 

Ultrasonic testing is particularly attractive due to its relatively low cost, rapid inspection and 

that it is non-destructive [Bungey and Millard (1996)]. The preferred technique is to mark 

out a grid pattern on the structure and measure the pulse velocity at each grid point. Results 

are then often plotted as a 2D surface map to aid the identification of problem areas. Current 

equipment has limitations, one being that a viscous couplant must be applied to the faces of 

the transducers to achieve good acoustic coupling. This practice becomes particularly 

inconvenient, messy and time consuming when performing a large number of measurements 

on a grid. Additionally it is known that with commercial apparatus the measured velocity 

varies with the path length being tested. When absolute values of the velocity of sound in 

concrete are required, this anomaly can become significant. 

The work described in this thesis concentrates on developing ideas to improve the current 

commercial ultrasonic apparatus used for the routine inspection of concrete. An investigation 

into the cause and effect of measurement errors was conducted in order to recommend 
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remedial action. Alternative coupling of ultrasonic transducers was investigated to make the 

technique more convenient. Each of the chapters in this thesis is largely self contained and 

describes a particular aspect of the project. The order of the chapters approximately follows 

the chronological order in which the work was carried out by the author.  

A description of the material properties of concrete is given in Chapter 2. This provided 

some background information on concrete alerting the author to the complex composite 

nature of concrete which is prone to wide specification variations due to the abundance of 

mixes and construction practices possible. A review of existing and emerging non 

destructive inspection techniques follows for which detailed references are given. This part 

of the work was conducted to assess the advantages, disadvantages, limitations, and 

popularity of pulse velocity ultrasonic apparatus among its competing technologies. The 

technique was found to stand out for its low cost and rapid inspection. The limitations of 

unreliable results and inconvenient coupling were identified and proposed to be addressed by 

this research. The chapter ends with an investigation into the operation of the PUNDIT test 

equipment [PUNDIT 6 operating manual], which is the standard pulse velocity apparatus 

used in the UK. It would be to such equipment that improvements recommended in this 

thesis would apply. 

Chapter 3 describes work conducted to investigate the extent of inherent measurement errors 

associated with commercial pulse velocity apparatus. It is known that the measured pulse 

velocity varies with the path length being tested for apparatus such as the PUNDIT that 

adopts threshold crossing to determine signal arrival times. The factors that contribute to this 

anomaly were investigated. Signal losses due to beam spreading were predicted along with 

an experimental investigation to obtain functions that describe signal attenuation as a 

function of excitation frequency due to material properties. Commercial transducer and 

excitation characteristics was explored to model the pulse emitted from a transducer. From 

these studies, the extent of the anomaly when testing various concrete mixes was predicted 

and a function has been derived to correct measurement errors. 

The method used to calibrate commercial apparatus prior to conducting  pulse velocity 

measurements was investigated in Chapter 4. Calibration is required when absolute values of 

the velocity of sound in concrete are required and is achieved by coupling the transducers to 

a bar and setting the apparatus display to a time value that is stamped on the bar. The time 

value relates to the time that it would take a longitudinal bulk wave to propagate the length 

of the bar. A finite element study was conducted to validate the time value since classically 

bulk wave propagation in a bounded medium is not presumed. To aid interpretation of data, 
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signal-processing techniques have been investigated that are suitable for the evaluation of 

wave velocities in dispersive systems. A comparison between the performance of the 

established phase spectrum technique and two methods developed by the author is presented 

in Appendix 1. Consideration of processed finite element and experimental results enabled 

an evaluation of the standard calibration procedure. 

The development of hand held devices that would enable the convenient coupling of 

transducers is dealt with in chapter 5. In this work attention was focused on appraising solid 

coupling as an alternative to the current practice of using a viscous couplant. The topology 

of a range of concrete surfaces were surveyed. For rubber contact with such surfaces the 

characteristics of ultrasonic transmission across a low load interface was investigated 

experimentally. From this study a relationship between signal transmission and true contact 

area was argued. Numerical contact models were derived to predict the true contact area as a 

function of applied load that an axi symmetric body makes when pressed onto a real rough 

surface and thereby predict signal transmission. Such models would enable the design 

optimisation of a solid coupling device. A simple to program solution technique was 

developed to solve the contact model equations. Model predictions were validated against 

classical analytical solutions and experimental verifications. The performance of dry rubber 

coupling transducers to concrete was evaluated by employing a combination of experimental 

results and model predictions. The transmission across a dry coupled low load interface was 

shown not to be sufficiently strong for most practical applications. However such devices 

were found to still be attractive when wetted just with water, which would still avoid the 

inconvenience of conventional viscous coupling.  

Chapter 6 reports on the application of convenient coupled devices for the inspection of 

concrete structures. The development of prototype membrane shoes designed to attach to 

standard commercial transducers is discussed where model predictions were utilised to 

optimise the design. A trial inspection of two concrete blocks was conducted so as to 

compare test results when wet membrane coupling transducers to those when conventional 

viscous coupling. Performance of a technique was judged by the time to complete an 

inspection, preparation and clean up times, and repeatability of results. 

The main conclusions of chapters 2 to 6 in this thesis are collated in chapter 7. Specific 

issues that have been raised in this thesis are outlined and appropriate future work proposed. 
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The work presented in this thesis forms a submission for a Ph. D. In Mechanical engineering 

from the University of London (Imperial College). Unless otherwise stated, the work is the 

author’s own. It builds on a long history of wave and contact mechanics, which are 

summarised within the relevant sections of later chapters. As far as the author is aware, the 

novelty of the work contained in this thesis includes, 

A suggested function to correct pulse velocity measured by commercial equipment for 

path length tested. Only the extent of the anomaly has been reported previously. 

Signal processing techniques have been developed around the wavelet and Hilbert 

transforms to extract group velocities from dispersive signals.  

For fractional contact ratios of the order of less than 10%, the case was argued that the 

signal transmission across an imperfect interface was proportional to true contact area. 

Established models are known to agree well with experimental results for greater contact 

areas, however very little work has previously been conducted in this regime. 

Derivation of axi symmetric numerical contact models for solid body and especially 

liquid filled devices loaded onto real rough surfaces.  

Development of an iterative technique to solve contact equations, which the author 

suggests is simple to program and structured in an intuitive manner. 

Development of a novel hand held wetted rubber membrane coupled device. Coupling 

transducers to concrete with such a device was shown to offer improved repeatability of 

results and make pulse velocity testing of concrete more convenient and less messy. 
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Chapter 2 

Review of the inspection of concrete structures 

2.1 Introduction 

This chapter provides some background information on the material characteristics of concrete 

and then reviews some of the non-destructive techniques used to inspect concrete structures. 

Finally a description of the PUNDIT ultrasonic apparatus is given. It will be to such equipment 

that recommendations made in this thesis will apply. 

2.2 Concrete material characteristics 

The following describes the heterogeneous nature of concrete, its inherent volume variations 

and the need for inspection. Useful background information on concrete constituents and 

properties can be found in text given by [Mindess and Young (1981)] and [Neville (1996)]. 

2.2.1 Material Constituents 

Concrete is a complex composite material, which begins its life as a mixture of graded stone 

aggregate particles suspended in a fluid of cement and water and admixtures.  

The most common cement material used is Portland cement [PCA (1994)], the manufacture of 

which consists of heating together ingredients which contain the desired combination of 

calcium, silicon, aluminium and iron oxides until they fuse to form a clinker. The clinker is 

ground down with the addition of gypsum to produce the familiar fine powder. The main raw 

materials are chalk or limestone and shale or clay whose properties are subject to local 

variations. Aggregates such as gravels, crushed rock and sand are used in concrete chiefly as 

inert fillers to bulk out the volume and reduce shrinkage during hydration [ACI (1996)]. They 

are characterised by their mineralogical nature and their form. Admixtures are materials added 

in relatively small quantities to concrete during the mixing process to modify its properties in 

the fluid or hardened state. 

The overall proportions of the principal ingredients are controlled by the requirements that: 

when the mass has hardened, it possesses strength and durability for the purpose for which it is 
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intended; when freshly mixed the mass must be workable; and the cost of the final product be a 

minimum consistent with accepted quality. Nominally, aggregate occupies 75% of the volume, 

cement about 15% and water content 10%. The priority when choosing a mix design is 

strength, which along with permeability of the concrete is governed by the water-cement ratio. 

For high strength and low permeability the water-cement ratio should be low. The workability 

that describes the ease of placing and compaction, for a fixed water-cement ratio, is adjusted 

by choice of aggregate quantity, grading and shape, and also by the assistance of chemical 

plasticizers. Larger, rounded aggregate tends towards greater workability. It is usual for the 

coarse aggregate used in structural concrete to have a nominal maximum size of 20mm. 

2.2.2 Hardening of the cement paste 

The mixture remains fluid or plastic until the development of the cement hydrates which 

gradually solidify to form a paste that surrounds the aggregate particles and binds them 

together giving form and strength to the mass [PCA (1994)]. The chemical reaction involves 

the water and material on the surface of the cement particles forming gel which may have 

twice the volume of the cement from which it was produced. As hydration proceeds the gel 

extends outward from each particle to join with gel from other particles, to form a skeletal type 

structure that strengthens the paste. The process continues over an extended period releasing 

heat, but occurs at the maximum rate during the first few days. The cement paste, comprising 

mainly calcium silicate hydrate, has no clearly defined crystalline structure and its actual 

composition is indeterminate, yet to a very large extent its character determines the durability 

of the concrete and the nature of any deterioration [Mays (1992)]. Denser pastes gives rise to 

greater strength and lower permeability. The properties of the hardened cement paste depend 

upon: the characteristics of the cement; the relative proportions of cement and water by weight; 

and the completeness of the hydration. The paste has an inherent porosity with very fine pores 

of about 4 nm in diameter, and considerably larger capillary pores whose volume and pore 

diameter increase with higher original water-cement ratio (200-500 nm for a water-cement 

ratio of 0.65). In addition the paste will contain air voids much larger than the capillary pores 

resulting from incomplete compaction and unhydrated remnants of cement grains. The 

capillary porosity in the paste makes concrete permeable to liquids and gases. Since hydration 

is a chemical reaction, the quantity of water required for complete hydration is fixed by the 

chemistry of the cement. For Portland cements a water-cement ratio of at least 0.23 is required 

for one month of hydration. However, to achieve full hydration and render the fluid concrete 

workable, an excess of water is required, such that water-cement ratios vary between 0.4 to 

0.7. Thus all concrete has a pore system much larger than that which is inherent [Neville and 
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Brookes (1990)]. The extra water not used in hydration remains within the pore system and 

will eventually dry out if climatic conditions or the location of the concrete permit. 

2.2.3 Characteristics of the hardened product 

The strength of concrete is controlled by: strength of the matrix; strength of the bond between 

matrix and aggregate; strength of the aggregate and the extent of any crack system. The brittle 

matrix is reported [Mays (1992)] to demonstrate a viscoelastic nature. Although relatively 

strong in compression, concrete is weak in tension such that structural members subject to 

tensile stress are reinforced with steel bars.  

Properties vary within a concrete member due mainly to differences of compaction and curing 

as well as non-uniform supply of material [Waddell and Dobrowoski (1999)]. Compaction and 

curing variations can be shown to follow well-defined patterns according to the type of 

structure, whereas the generally small material and mix variations can be assumed to be 

random.  

Compaction and curing effects will depend partially upon construction techniques but also are 

closely related to member types and location within the member [Neville (1996)]. Compaction 

may be hindered by reinforcement leading to voids and density variations. Lower levels of 

structures will experience greater compaction due to hydrostatic effects related to member 

depth, such that density tends to be higher at the base than in the upper region. 

The aim of curing is to ensure that sufficient water is present to enable hydration to proceed. 

As the extra water not required for hydration evaporates there is a shrinkage of the cement gel. 

The shrinkage of the gel fraction is restrained by the presence of aggregate. However, 

widespread cracking can occur if the upper layers of the concrete dry and shrink much more 

rapidly than the interior. Inadequate curing may also cause strength variations between interior 

and surface zones in the order of 5-10% [Bungey and Millard (19960] for gravel concretes. 

During early hydration there is a tendency for moisture to rise and aggregate to settle known as 

bleeding. The effect is that the cement paste in the upper portion is diluted and when hardened 

is weaker than the average at full depth. For this reason coring for strength determination or 

chemical analysis is not carried out on the top 10% of a sample [Conc. Soc. (1987)]. Some of 

this bleeding water may be trapped under reinforcement bars and larger pieces of aggregate 

forming water pockets. Local variations in bleeding rate, or evaporation of water from the 
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surface at a rate faster than the bleed rate cause bulk volume variations, which lead to cracks if 

the concrete cannot follow the change in volume. It is likely that nearly all concretes have an 

extensive system of microcracking induced by drying shrinkage and also by thermal 

movements [Kay (1992)]. It is not until the cracks become macro-sized that problems arise. 

2.2.4 The need for inspection 

Assessment of in-situ quality and integrity is primarily concerned with the adequacy of the 

existing structure and its future performance. Generally it is either the in-situ strength or 

durability of a structure that is regarded as the most important criterion. Evidence is often 

required to identify the extent of internal voids and crack systems, as a result of inadequate 

workmanship. The monitoring of long term changes in material properties, crack systems, and 

structural performance is a necessary part of any maintenance program. Well designed, 

compacted and cured structural concrete can be a very durable material. However, concrete in 

service is exposed to a wide variety of environments and, because of its physical and chemical 

nature, may deteriorate as a result [Perkins (1997)]. The structure of cement hydrates contains 

pores or capillaries, and these along with cracks provide passage ways by which acidic 

moisture and gases that attack the alkaline concrete can penetrate. Once deterioration is 

apparent its classification and extent need to be appraised so that appropriate remedial action 

can be specified. 

The most reliable methods for assessing concrete strength are those that cause the most 

damage [Bungey and Millard (1996)] such as the taking and crushing of cores, the pull-test 

which requires pre-planned inserts to be set into the structure, and the pull off test which does 

not require preplanning.  

Tests that cause little or no surface damage are most suitable for determining comparative 

concrete quality [Malhotra and Carino (1991)], since correlation of their results to strength 

values are empirical and often unreliable. There are two methods that are popular, surface 

hardness and ultrasonic pulse velocity. For both these tests it is recommended that the test be 

carried out on a grid and the results plotted as a contour map so as to aid location of 

differences in quality. Testing for local integrity, involving looking for voids, delaminations 

and other discontinuities, can be assessed by impulse radar, infrared thermograghy and impact 

echo techniques. Radar is perhaps the most popular, but like all integrity test equipment there 

is a lot of room for improvement in current signal processing used. It is likely that this is the 

reason why inspecting for integrity is less common than for strength. 



 32

At present civil engineering has the greatest confidence in the most destructive methods of test 

[Bungey and Millard (1996)]. For a non-destructive test to be accepted would predominantly 

require that its results are not ambiguous, costs involved with its use are low, and it should be 

convenient and rapid to employ.  

2.3 Concrete non-destructive inspection techniques 

The following section discusses the attributes of various non-destructive inspection techniques, 

both mature and emerging, used for assessing the in situ comparative quality and localised 

integrity of concrete. Non-destructive testing is generally defined as not impairing the intended 

performance of the element or member under test. When applied to concrete, tests are included 

that cause localised surface zone damage. All non-destructive methods can be performed 

directly on the in-situ concrete without removal of a sample although removal of surface 

finishes is likely to be necessary. For comparative purposes the truly non-destructive methods 

are the most efficient, since their speed permits a large number of locations to be easily tested.

Recommendations for the use of non-destructive methods when testing hardened concrete are 

given in BS1881: part 201. 

2.3.1 Rebound Hammer 

The rebound hammer provides an empirical measure of the hardness of a localised area of the 

concrete surface. The rebound principle is well established and widely accepted for assessment 

of concrete uniformity, determination of areas of poor quality or deterioration, and to indicate 

changes in characteristics with time. The most popular equipment, the Schmidt Rebound 

Hammer, was first developed in the late 1940’s by the Swiss engineer Ernst Schmidt  as shown 

in Fig 2.1. The hammer works by impacting a spring loaded mass on a plunger which is in 

contact with the surface. The distance which the mass rebounds, which is indicated on a sliding 

scale, is a measure of the hardness of the surface, for which correlation graphs are available 

[Naik and Malhotra 1991]. The scale reading is known as the rebound number, which is an 

arbitrary reading that also depends on the energy stored in a given spring and the mass used. 

Recommendations for the use of the rebound hammer method are given in BS1881:Part 

202(45) and ASTM C805(46). It is suggested [Schickert (1994)]  that the Schmidt hammer is 

the most common test carried out on in-situ concrete within Germany, with other tests finding 

little acceptance.  
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The technique is well documented, providing numerous references on its use on various 

structures. It is suggested [Bungey and Millard (1996)] and [Naik and Malhotra (1991)] that 

the advantages of the method are that it gives a quick rough idea of the quality of concrete, it is 

simple to operate, requires a low skill level, is robust, weighs less than 2kg, and has a low 

relative cost of operation. They suggest that the limitations of the technique are; 

The test is highly localised and only the concrete within approximately 30mm of the surface 

contributes to the result, and since the surface layer may not be representative of the concrete 

at depth, readings can only reflect surface layer stiffness. 

If the rebound hammer is to be used to assess strength then it is necessary to determine an 

individual correlation curve for the concrete under consideration, though in a practical 

situation it is unlikely that a strength predication can be made to an accuracy of 25%; 

The reading is very sensitive to local variations in the concrete, especially to aggregate 

particles near the surface. It is therefore necessary to take several readings at each test location, 

accepting the average if the readings agree with statistical criteria; 

The surface must be smooth, clean and dry with loose material ground off;  

Hammer orientation has an influence on measured values, although correction factors can be 

used to allow for this effect. Since a smooth, well compacted surface is required for tests, 

variations of strength due to difficulties in internal compaction cannot be detected with any 

reliability. 

2.3.2 Infrared Thermography 

Detection of delaminations or voids by the emerging technique of infrared thermography is 

based on the principle that sub surface anomalies effect the rate of heat flow through the 

material. These changes in heat flow cause variations in the surface temperature. For large 

structures such as bridge decks and highways, solar heating is often sufficient, providing 

temperature gradients are greater than 2oC. The best time for such testing is usually after sunset 

when the structure begins to cool down. Procedures for thermography in the investigation of 

bridge deck delaminations are given in ASTM D4788(234). The technique has been found to 

be useful in assessing the heat distribution in concrete during hydration [Bungey and Millard 

(1996)], during which time stresses due to temperature differentials may cause cracking 

particularly in the surface zone. There is limited documentation of the technique, the main 

advantage appears to be that large areas can be scanned quickly (15mph on highways) from a 

distance (up to 20m on bridge decks) on one side  [Weil (1992)]. It is also stated that the main 

disadvantage of the technique is that the depth of a void cannot be determined, although its 

outer dimensions are evident, suggesting it be combined with radar or ultrasonics inspection. 

Bungey and Millard [1996] suggest that the main limitations of the technique are its high 
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relative cost, the skill level required to interpret images and that presently it is suitable for 

finding only large scale flaws, where the smallest defect that can be detected is reported to be 

200mm x 200mm. 

2.3.3 Radiation methods 

There are three basic radioactive methods that have been steadily developed over recent years 

for testing of concrete: x-ray radiography; gamma-ray radiography and gamma-ray radiometry.  

Radiographic methods involve exposing special photographic material to radiation transmitted 

through a concrete structure. The intensity of the transmitted incident energy is a function of 

the material traversed and attenuation due to energy absorption and simplified is given by the 

following equation [Bungey and Millard (1996)] 

meII ox        2.1 

where Ix is the emergent intensity, Io the incident intensity,  the mass absorption coefficient 

and m the mass per unit area of material traversed. 

In the x-ray range attenuation is dependent on both the atomic number and density of material, 

where as for the gamma-ray range, density is the principal factor. X-rays are generated in an x-

ray tube when a beam of electrons is accelerated on to a target by a high voltage (typically 

8MeV) and stopped suddenly on striking the target. The x-rays produced have different 

wavelengths and different penetrating powers according to the accelerating voltage. Since the 

equipment is bulky not much application has been seen outside the laboratory [Nagy (1997)]. 

Gamma rays are electromagnetic radiation emitted from the nucleus of radioactive elements, 

and being much more portable, have become the principal radioactive method for on-site use. 

The choice of source, which is usually a radioactive isotope, depends on the thickness of the 

concrete involved. Iridium 192 is used for 25-250mm thickness, Cobalt 60 (1.17 and 1.33MeV 

typically) for 125-500mm. For thickness above 450mm exposure times become relatively long, 

such that a 6MeV switchable x-ray source which reduces exposure time to 15-20mins is 

preferable. Kear [1994] reports on the use of radiographic inspection of post-tensioned 

concrete bridges, suggesting that the short wave length and particle behaviour of the 

transmitted energy provided high resolution radiograph images of the concrete interior, 

informing on location of voids and reinforcement. The development of a portable device is 

discussed by Ewert [1997]. The main disadvantages with radiography were reported to be that 

it requires access to both sides of structure, the adverse response by public to the use of 

hazardous radiation and the high radiographic exposure times in concrete. BS 1881:PART 
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205(272) provides guidance on radiographic work, including suitable sources of radiation, 

safety precautions and testing procedures. 

Gamma radiometry involves the use of a concentrated source and a detector to receive 

emissions at a localised point on the member under test. There are two techniques of 

radiometry: the direct and the backscatter method. In direct methods the source and receiver 

are placed on opposite sides of a member. The intensity of the received signal is an indication 

of the attenuation due to through transmission. The approach is most often used to measure 

local density, but may also be adapted to assess member thickness or location of 

reinforcement. As the high-energy radiation passes through the concrete some is absorbed, 

some passes through completely, and a considerable amount is scattered by collisions with 

electrons in the material. The scattering forms the basis of backscatter methods, which are 

suitable for testing the outer 100mm of concrete. The gamma-ray source and detector angled at 

approximately 45o, are fixed close together in a suitably screened frame which is placed on the 

concrete surface.  

The main limitations of the technique [Halmshaw (1987)] are that gamma sources cannot be 

switched off, the 1985 Ionising Radiation Regulations must be complied with, highly trained 

licensed operators are required and backscatter results are only reliable to limited depths. 

2.3.4  Ultrasonic techniques 

Ultrasonic methods have been used for assessing comparative strength of concrete, detecting 

flaws such as voids or cracks, and estimating member thickness. The inspection of concrete by 

ultrasonic methods is well documented and mature being first established in the 1940’s. 

Ultrasonic techniques involve the propagation and detection of mechanical vibrations that have 

interacted in some way with the structure under test. When the surface of a semi-infinite solid 

is excited by a time varying mechanical force, energy is radiated from the source as three 

distinct types of elastic wave propagation. The fastest of these  waves has particle 

displacements in the direction of travel of the disturbance and is called the longitudinal, 

compression or P-wave. The compression wave velocity VP is a function of the dynamic 

Young’s modulus  E, the Poisson’s ratio , and the mass density , [Krautkramer 

&Krautkramer (1969)], and is given by; 

)21)(1(
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The second fastest is the shear, transverse or S-wave, which has particle displacements 

perpendicular to the propagation direction. The shear wave velocity VS is a function of the 

dynamic shear modulus G and ,

G
SV        2.3 

Young’s and the shear moduli are related by 

)1(2GE        2.4 

Compression and shear wave velocities are theoretically interrelated by Poisson’s ratio ,

which can be expressed as 

2
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The compression and shear waves propagate throughout the material in all directions. The 

third type of wave-motion produced travels along the surface and has elliptical particle motion, 

where the component of displacement normal to the surface is greater than the component in 

the direction of wave propagation. The velocity, VR, of this surface wave, known as the 

Rayleigh wave, in simplified form is given by 

SR AVV        2.6 

where A is a function of  and VS. The ratio of VR/ VS increases as Poisson’s ratio increases, but 

not significantly. For values of  from zero to 0.5 the ratio of VR/ VS changes from 

approximately 0.87 to 0.96 [Sansalone and Carino (1991)]. 

Ultrasonic inspection of concrete is basically the evaluation of one or more of these wave 

velocities. Since wave velocity is a direct indication of stiffness of the material, a higher wave 

velocity is associated with higher stiffness.

When an ultrasonic wave is incident on a plane boundary between two media, some of the 

ultrasonic energy is transmitted through the boundary and some is reflected. The percentages 

of energy transmitted and reflected depend on the specific acoustic impedance , Z,

VZ        2.7 
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where is the density of the material and V is the velocity of the wave. For two materials of 

different acoustic impedances Z1 and Z2 the percentage energy transmitted ET is given by 

Halmshaw [1987] as; 
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and the reflected energy ER, by 
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For amplitude values the square root of the above equations are taken. The equations are valid 

for both compression and transverse waves, but as a transverse wave cannot be sustained in a 

liquid, a transverse wave at normal incidence is always completely reflected at a solid/liquid or 

solid/gas interface.

The resolution of an interrogating signal is indirectly proportional to signal wavelength ,

given by the relationship fc , where c is the phase velocity and f the frequency of 

excitation. Additionally, an electro-acoustic transducer has directional properties, where the 

main energy falls to zero at an angle of divergence , given approximately by 

D

22.1
sin        2.10 

where D is the diameter of the transducer [Krautkramer &Krautkramer (1969)] . Thus high 

frequencies in the MHz range are preferred for ultrasonic inspection. In practice an upper limit 

is imposed on the frequency by very high attenuation of vibrations whose wavelengths are 

comparable with the grain size of the material to be inspected. For fine grained materials such 

as steel or aluminium, frequencies of tens of MHz will propagate without undue attenuation, 

and thus it is possible to produce a pulse in which most of the energy is contained within a 

beam of about 5o for a 16mm 5MHz transducer. In structural concrete however, the coarsest 

aggregate is of the order of 20mm, which imposes a practical upper limit of several hundred 

kHz. Frequencies of the order of 50kHz to 100kHz are popular for long range inspection of 

concrete [Bungey and Millard (1996)] (10m for 54kHz to 3m for 82kHz), however these 

frequencies imply wavelengths around 50mm, which for a standard 50mm diameter 

transducer, as described in Chapter 3, offers no directional properties at all and low resolution. 
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Nevertheless, the relation of wave velocities to mechanical properties, low relative cost and 

speed of operation make ultrasonics a popular choice, with much research being conducted 

world wide to improve the techniques. The following discusses a selection of techniques, by 

no means complete, both mature and emerging. 

2.3.4.1  Pulse velocity 

The most mature ultrasonic concrete inspection technique involves the generation of a pulse, 

transmitting this to the concrete, receiving and amplifying the pulse and measuring and 

displaying the time taken. A schematic of the technique is shown in Fig 2.2. In general, 

repetitive pulses are generated electronically and transmitted into mechanical wave energy by a 

piezo-electric transducer. Due to the attenuation effects of concrete, through-transmission 

utilising narrow band (minimal damping) transducers are preferred, so as to maximise the 

received signal. Good acoustic coupling (maximised transfer coefficient) between the concrete 

surface and transmitting transducer is provided by a suitable medium such as grease or 

petroleum jelly. Rough surfaces should be ground down or filled with a quick setting cement. 

A similar receiving transducer is coupled a known distance d away from the transmitter, and 

upon reception, the mechanical energy is converted back into electric pulses. An electrical 

timing device measures the interval between onset of excitation and reception and displays the 

signal transit time t. The velocity VL  is then calculated from the relationship 

t

d
VL        2.11 

Since Poisson’s ratio , and the mass density , will vary little for concrete mixes with natural 

aggregates, the relationship between velocity and dynamic elastic modulus may be expected to 

be reasonably constant [Bungey and Millard (1996)]. However there is no direct relationship 

between velocity and strength in any medium. For this reason it is advisable to use the 

technique to acquire a map of velocity measurements which is then an indication of concrete 

uniformity.  

BS 1881 Part 203 gives recommendations on the measurement of ultrasonic pulse velocity and 

BS 1881 Part 209 gives recommendations for the determination of dynamic modulus.  

Popovics et al. [1995] report on the comparison of standards that refer to determination of 

ultrasonic pulse velocity in concrete. Bungey [1991] reports that in the UK the usage of 

ultrasonic techniques on in situ concrete was almost exclusively limited to measurements of 
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ultrasonic velocity using through transmission techniques, with frequencies of the order of 50 

to 80kHz  

The PUNDIT apparatus (description and operation given in Chapter 2.4), manufactured by 

CNS Farnell London, is a popular choice of equipment for pulse velocity testing of concrete. 

The manual that accompanies the PUNDIT apparatus suggests that when applying grease to 

the transducers to ensure good acoustic coupling, care must be taken to eliminate air pockets, 

apply only a thin layer of couplant and avoid couplant contamination by dust or grit. Due to 

grease coupling unreliability, readings should be repeated from scratch. The problems of 

grease coupling when testing metals has been addressed by Drinkwater [1994] by the use of a 

rubber wheeled probe that eliminates the necessity of grease coupling and would increase the 

rate of inspection. Alternatively Wu et al. [1997] reports on using conical transducers that 

require no coupling. An exponentially shaped probe is available from CNS, for testing rough 

surfaces, but they recommend that it is used as a receiver only, due to the reduced amplitude of 

the transmitted signal 

There is evidence that the measured velocity, for apparatus such as the PUNDIT, will decrease 

with increasing path length, a typical reduction of 5% for a path length from approximately 3m 

to 6m is reported [Naik and Malhotra (1991)].  Bungey and Millard [1996] suggest that the 

path length should be measured to an accuracy of  1%, which may be difficult for path 

lengths less than 500mm, and that the minimum path length is governed by the pulse 

wavelength being about 85mm for a 54kHz transducer frequency. 

2.3.4.2  Pulse echo 

The technique was first proposed by Firestone [1940] but has seen little application in the 

inspection of concrete, though much present research is being undertaken to rectify this. 

Emerging concrete pulse echo techniques are concerned with the evaluation of concrete from a 

single surface, with the aim to: detect air filled voids and cracks; locate structural elements 

such as reinforcement and ducts; and provide information on geometrical dimensions. 

The technique requires a short time length pulse (broad in frequency domain) to be transmitted 

into the structure by a electro-acoustic transducer and received on the same surface by the 

same (pulse-echo) or an additional transducer (pitch-catch).  A schematic of pulse echo is 

shown in Fig 2.3. Broad band transducers are required for pulse echo so that the pulse length 

can be less than the distance travelled. A 100kHz transducer and concrete with a sound 

velocity of 4000m/s results in a 40mm wavelength (from fc ). If a transducer rings down 
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to 4% of its original amplitude after 5 cycles, this would limit the minimum depth that could 

be inspected to 200mm (resolution distance). For less than 200mm path length the transducer 

would be still transmitting significantly while it was trying to receive the smaller amplitude 

echo. Similarly for pitch catch, the location of the first echo can be within one wavelength of 

the transducer, while subsequent echoes must be separated by the resolution distance or they 

will superimpose on the previous echo. 

To achieve the broadband transducer characteristics necessary for pulse echo, a suitable 

material is backed onto the piezoelectric material to damp oscillations. The unwanted effect of 

this is to reduce the amplitude of the transmitted signal, and the sensitivity of the receiver, 

hence a reduction in received signal to noise. Attempts over the years have been made to 

develop pulse echo techniques for the inspection of concrete structures, [Bradfield and 

Garrfield (1964)], [Howkins (1968)], [Forrest (1977)], all of which suffered from impractical 

cumbersome transducers. Krause and Wiggenhauser [1997] report that using separate 

transducers and advanced signal processing techniques is the key to improved pulse echo tests 

on concrete. He also states that pulse echo inspection of concrete was reported in 1991 to be 

unpromising due to the backscatter of the pulse off aggregate that contaminates the received 

signal and the relative insensitivity of broad band transducers which results in low signal to 

noise, and concludes that a lot of research work is still required to enable identification of 

voids. Andrews and Hughes [1991] report that tungsten loaded epoxy has desirable low 

frequency damping characteristics, and that impedance of piezoelectric material should be 

matched to that of concrete to improve signal to noise ratio. It is additionally suggested that the 

use of chirp signals significantly increases signal to noise, which is also reported by Koehler et 

al. [1997]. Weizheng and Yiyoung [1996] report on an array transducer design that has 

improved directional characteristics and sensitivity, and the use of split spectrum processing. 

Scickert [1995] reports on using synthetic aperture signal processing that takes advantage of 

the inherent broad beam divergence, which results in an improved image over conventional B 

scans. Sansalone and Carino [1991] report that time domain processing has been exclusively 

used in applications where pulse echo or pitch catch methods have been used on concrete 

structures. Also, since it is difficult to construct low frequency, broad band transducers with 

desirable directional characteristics, there are no currently available commercial transducers 

for pulse echo testing of concrete. Most researchers have instead resorted to pitch catch where 

a higher damped transducer is used as a transmitter and a lightly damped one for receiving. 
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2.3.4.3  Impact echo 

The technique was first investigated [Sansalone and  Carino (1986)] for the location of flaws 

within concrete. It involves introducing stress waves into a test object by spring loaded 

mechanical impact and monitoring the dynamic displacements caused by the arrival of waves 

reflected from internal defects and external boundaries.  

The force-time history of an elastic impact may be approximated as a half-sine curve, whose 

period is determined by the contact time Tc, and is given by Johnson [1985], 
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where m is the mass of the impactor, R the impactor radius, V is the velocity of approach and, 

E* the averaged Young’s modulus between impactor and surface materials given by 
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where E and are the Young’s modulus and Poisson’s ratio of the materials. The frequency 

content of the pulse which is a function of contact time affects the size of the defect that can be 

detected. As the contact time decreases, the frequency content of the pulse becomes more 

broad band at a higher centre frequency, and defects nearer the surface can be detected. The 

receiving transducer is often a broadband conically shaped displacement transducer, whose 

shape ensures good contact and least interference with the resonating pulse. A schematic of the 

impact echo for determination of material velocity and reinforcement bar depth is shown in Fig 

2.4a and Fig. 2.4b respectively. Impact on the surface generates a stress pulse, which is 

reflected back and forth between the impacted surface and internal defects and other external 

surfaces, such that a resonance condition is created. Each time the compression wave arrives at 

the top surface it causes a downward displacement. The time between successive downward 

displacements is the time, t, it takes for the compression wave to propagate and is given by 

pV

d
t

2
        2.14 

Where d is the distance to the reflector and VP the compression wave velocity. The frequency 

of the P-wave arrivals at the top surface is equal to the inverse of the arrival time, given by  
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The recorded displacement wave forms are studied in the frequency domain, where any peak 

can be related to the distance to a reflector if the P-wave velocity is known. Likewise, if the 

thickness of a member is known then the compression wave velocity can be calculated. The 

amplitude of the peak is directly related to the mismatch in impedance between the two 

materials on the two sides of an interface. The greater the mismatch the greater the amplitude 

of the resonant frequency will be.  

Popovics and Achenbach [1996] report that the main limitation to the technique is the lack of 

control on the frequency content (typically up to 30kHz centre frequency ) and directional 

characteristics of the input signal. It is suggested that the technique would benefit from the use 

of electromagnetic transducers, such as modal shakers. Davies et al. [1996] assess the 

advantages and limitations of impact echo for the evaluation of highway pavements, and 

reports that due to the high energy stress pulse relatively long distances in concrete can be 

tested. Krause [1997] reports on commercially available impact echo concrete test equipment, 

giving the fact that the apparatus is light, portable, quick to use, and simple to operate, as the 

main advantages of the technique. The accuracy of the technique has been investigated by 

Nazarian and Baker [1996]. On average, the thickness could be measured with an accuracy of 

5% dependent on aggregate size. The technique has been used to determine crack depth to an 

accuracy of 10% and reinforcement location [Lin et al. (1996)]. It is reported [Sansalone and 

Carino (1991)] that there is currently no standard for impact echo testing of concrete 

structures.

2.3.4.4  Spectral Analysis of Surface Waves - SASW 

The applicability of surface wave phase velocity measurements for the evaluation of layered 

concrete structures such as pavements was first studied by Jones [1962] in the 1960’s. The 

intention was that measurements of the velocities of the surface Rayleigh waves generated are 

capable of providing information concerning the elastic properties of the materials in the 

pavement layers. The initial approach experimentally measured the wavelengths of steady state 

harmonic surface waves on concrete and bituminous highways, which had good agreement 

with theoretically obtained dispersion curves. In the 1980’s [Stokoe and Nazerine (1986)] the 

technique was improved by using a transient stress wave source, obtained by mechanical 

impact, which had the advantage of being a broad band input that contained many frequencies 
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rather than just one. At a depth below the surface of about 1½ wavelengths, the amplitude in 

each component wavelength is about 1/10 of the amplitude on the surface [Sanaslone and 

Carino (1991)]. Thus the depth of penetration of surface waves depends on their frequency, 

longer period waves penetrate deeper than shorter waves, such that short wavelengths sample 

properties at small depths and waves with long wavelengths reflect properties at larger depths. 

With the additional knowledge of the shear wave velocity in the concrete, the elastic properties 

of the layered medium are calculated from the experimentally obtained dispersion curves by an 

inversion process, with an accuracy of about 4 to 5%  [Nazarian and Baker (1991)]. A present 

SASW technique uses two vertical acceleration transducers placed a known horizontal distance 

from the impact source [Wu (1995)]. The dispersion curve of the surface waves (dependence 

of the phase velocity on the frequency) is obtained by analysing the phase spectra of the 

received signals given by [Akhlaghi and Cogill (1994)];  
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where  is the phase angle, and z the complex motion in the frequency domain. The phase lag 

of motion between two observed points of two transducers i is given by 

iii 21        2.17 

where subscripts 1 and 2 denote transducer number. The wavelength, i, is given by: 

i
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where d is the distance between transducers. By noting fc , the corresponding phase 

velocity, c, can be readily determined, and hence the experimentally obtained dispersion curve.  

A similar technique reported [Wu et al. (1995)] , establishes Rayleigh and surface skimming 

longitudinal wave velocities in the time domain. [Akhaghi et al. (1995)] describes the 

technique for analysing pavements, and suggests that the results vary by less than 10% with 

respect to other techniques. The main advantages of the technique are given that it is single 

sided and the variation in velocity with depth can be determined so that the extent of  surface 

layer deterioration can be estimated. The limitations are that, complex signal processing 

presently limits applications in the field, it is only applicable to surface layer properties, the 
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technique requires the structure to act as a wave guide so it is only suitable for inspecting slabs 

and skilled operators are required to interpret the test data. 

2.3.5  Ground Penetrating Radar (GPR) 

GPR is a relatively new technique for civil engineering applications, with a range of equipment 

commercially available for the assessment of compaction of granular fill materials around civil 

structures, detection of moisture in construction materials and inspection of bridge decks for 

voids. The technique relies on an electromagnetic wave which is propagated into the material 

under investigation by means of a combined antenna, comprising transmitter and adjacent 

receiver. A schematic of GPR is shown in Fig 2.5.  

Examination of the reflected waveforms, from interfaces between materials of different 

dielectric constants, enables the structure of the materials under investigation to be analysed. 

The propagation of an electromagnetic wave through low-loss dielectric materials, such as 

most common geological media and concrete, is dependent upon a variety of variables. The 

velocity of the pulse depends upon the dielectric constant of the material, and in simplified 

form is given by the following formula [Chen et al. (1994)], 

r
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where c is the velocity of light, and r is the relative dielectric constant of concrete, 

which if known allows the depth of reflective features to be calculated. The strength of the 

reflected signal depends upon the magnitude of the change in dielectric properties at an 

interface. The ratio of the reflected wave amplitude to the incident wave amplitude at an 

interface, known as the reflection coefficient, is given by 
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The subscripts 1 and 2 denote the first and second media at the interface. The ratio of 

transmitted wave to incident wave known as the transmission coefficient is; 
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A polarity change in the reflected pulse may be caused if the material beyond the interface has 

a higher dielectric constant. Attenuation of the radar signal is influenced by the material 

conductivity, which increases with moisture content.  

A meeting at the IEE, London was attended by the author in January 1997, where the NDT of 

highway pavements was discussed, particularly the critical appraisal of GPR. A number of 

presentations were given by GPR researchers and end users, with a mixed reception by the 

audience (GPR not being the universal panacea as sometimes reported). At this meeting 

problems associated with the technique were presented [Hardy and Gordon (1997)]. 

Fairfield et al. [1995] report on radar measurement of density variations around an arch bridge. 

By measuring the pulse velocity for a known path length, the dielectric constant was obtained. 

The technique proved to be a cost-effective NDT method, due to rapid one sided inspection, 

low manpower and limited site preparation. Bungey [1991] reporting on the operational 

aspects of GPR, suggests that skilled image interpretation is required even after signal 

processing, since  the radar picture does not often resemble the form of embedded features, 

where circular type sections reflect a complex hyperbolic pattern due to the diverging nature of 

the beam. Likewise, Saarenkento and Soderqvist [1994] reporting on radar bridge deck 

inspection in Finland, suggests the greatest problem is the present manual interpretation 

required. Warhurst et al. [1993] report on inspection of highway pavements, finding that 

scattered signal power was too low to permit detection of objects deeper than 125mm in 

concrete. Similarly Bungey and Millard [1996] suggest that detection of air filled voids is 

limited to 50mm since the difference in relative permittivity of air to concrete of 1:6 results in 

a low reflection intensity, and that using a 1GHz antenna, typical penetration depths are only 

500mm for dry concrete and 300mm for water saturated concrete. Malhotra and Carino [1991] 

report that GPR is most suitable in assessing with reasonable accuracy the water content of 

fresh concrete mixes or moisture content of hardened concrete, since for thickness 

determination it is difficult to predict the success of an investigation unless a knowledge of the 

structure’s dielectric constants is known. 

2.3.6  Review of non-destructive inspection techniques 

It is obvious that there is no existing universal technique for non-destructive inspection of 

concrete. Depending on the investigation to be undertaken, the advantages and limitations of a 

technique should be assessed to find the most appropriate that will provide the level of 

information required. Radioactive methods provide excellent internal images, for the location 
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of reinforcements, though the technique is time consuming and safety regulations make it 

restrictive. With GPR it is difficult to interpret the radar scans since the image does not often 

resemble the form of the embedded features. Current research is addressing signal processing 

to make the technique amenable to automation. Impact echo techniques have little control on 

the frequency content of the input signal and along with surface wave methods are best suited 

to inspection of layered structures such as pavement systems. Preferred pulse velocity 

techniques require access to both sides of a structure. The basic nature of the adopted signal 

processing leads to the measured velocity being a function of the path length measured and the 

need for viscous coupling makes the technique inconvenient. Alternative coupling that does 

not significantly reduce signal to noise would improve testing speed. Pulse echo is 

conceptually perhaps the most simple method. The technique is common for the inspection of 

metals, but the development of suitable transducers for testing of concrete is a difficult 

undertaking, and as such there are few devices known to be commercially available.  

At present civil engineering has the greatest confidence in the most destructive methods of test. 

For a non-destructive test to be accepted would predominantly require that its results are not 

ambiguous, costs involved with its use are low, and it should be convenient and rapid to 

employ. Of the techniques reviewed, the pulse velocity technique offers the lowest cost of use 

[Bungey 1996]. All ultrasonic techniques are governed by the unfriendly heterogeneous nature 

of concrete and in particular the presence of aggregate which restricts transducer frequencies to 

generally below 100kHz. It is generally thought that because of this that ultrasonic techniques 

cannot be developed further. However, there is scope for improvement of the pulse velocity 

method by addressing the unreliability of measurements and making testing more convenient 

by finding an alternative method of coupling the transducers. It was felt that such 

improvements could be achieved. The same level confidence was not given to developing the 

pulse echo technique for concrete inspection.  

Currently the apparatus most often used in the UK for pulse velocity testing of concrete is the 

PUNDIT apparatus manufactured by CNS Farnell, London. Similar equipment in appearance 

and operation known as the V-Meter [James Electronics, Chicago] is available in the USA. A 

thorough investigation of the PUNDIT equipment operation was conducted prior to 

researching the improvement of the technique. 

2.4  The PUNDIT test equipment 

This section describes the popular test equipment PUNDIT used for the evaluation of concrete 

pulse velocity and then discusses its various modes of operation. The apparatus which is 
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manufactured by CNS Farnell, London, derives its name from the initial letters of the full title 

of “Portable Ultrasonic Non-Destructive Digital Indicating Tester”. Its use is not limited to 

concrete having extensive reported applications in the testing of: geological materials such as 

rock, chalk, granite, frozen soils and sandstone; timber and glued laminates; cast iron, 

spheroidal graphite and asphalt; ceramics; frozen meat and bone structure; and carbon and 

graphite materials. 

2.4.1  The PUNDIT apparatus description 

The apparatus has been designed with operation in the field in mind. As such the PUNDIT unit 

is portable and rugged. The dimensions of the unit are 185 x 130 x 185mm, and it weighs in at 

3kg. The ambient temperature range to which the equipment may be operated is 0oC to 45oC.

The test equipment provides a means of generating a pulse, transmitting this to the concrete, 

receiving and amplifying the pulse and measuring and displaying the time taken. A simplified 

system diagram is shown in Figure 2.6. 

The apparatus can be conveniently divided into the following parts: 

1. Pulse generator 

2. Set reference display 

3. Receiver amplifier 

4. Timing pulse oscillator, Gate and counter 

5. Power supply 

6. Outputs

7. Transducers and leads 

2.4.1.1  Pulse generator 

The pulse generator comprises an Extra High Tension EHT power unit, a Thyristor and a Uni-

Junction Transistor UJT pulse generator. The capacitance of the transmitting transducer is 

charged to a potential of 1.2kV or 500V as selected by a switch on the rear panel. This 

capacitance is then rapidly discharged through a thyristor triggered by the UJT at a repetition 

rate of 10 or 100Hz as selected by the Pulse Repetition Frequency PRF switch. The repetition 

frequencies are derived, by division, from the 10MHz crystal timing pulse oscillator. 

Discharging the capacitance causes the transmitter to be shock excited and so vibrate at its own 

natural frequency. The pulse generator board is mounted in a screened compartment.  
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Figure 2.7 shows a time trace of the 500V PUNDIT excitation pulse, obtained by attenuating 

the signal and connecting to an oscilloscope, that shows typical capacitor discharge 

characteristics. 

2.4.1.2 Set reference delay 

The delay between the pulse applied to the transducer and the output from the receiving 

transducer when the two are coupled face to face is typically 2 s. To eliminate this delay the 

counter is inhibited for the duration of the reset pulse. A nominal 0.5 to 10 s variable delay 

control sets the duration of the reset pulse for the different types of transducers and cables. 

This control is used in conjunction with a reference bar that has a recorded transmission time 

of typically 26 s.

2.4.1.3 Receiver amplifier 

After transmission through the material under test the ultrasonic pulse is converted to an 

electrical signal in the receiving transducer. The received signal is then amplified to produce a 

‘Stop’ pulse coincident with the onset of the leading edge of the received signal waveform. 

The receiving amplifier has an input impedance of 500k  and is sensitive to signals above 

250 V. The receiving amplifier board is mounted in a screened compartment. 

2.4.1.4 Timing pulse oscillator, gate and counter 

A 10MHz quartz crystal oscillator module generates timing pulses. This allows a maximum 

resolution of 0.1 s. For longer transmission distances above 400m, the resolution can be 

switched to the 1 s range.

A bi-stable circuit is used to control the gate. On receipt of the ‘Start’ pulse from the Set Ref 

stage the binary changes state and opens the gate, timing pulses are passed through the gate to 

the counter. The gate is closed when the ‘Stop’ pulse from the receiver amplifier is applied to 

the other side of the gate control bi-stable. Following the ‘Stop’ pulse the counter is latched 

and the LCD on the front panel indicates the transit time. The reading is updated at a rate of 

2Hz with a range of 0.1 s to 9999 s. If a signal is not received the LCD will automatically 

blank. The electronic circuit of the apparatus uses High-Speed CMOS (MM74HC) integrated 

circuits.
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2.4.1.5 Power supply 

For field use an internal Nickel Cadmium battery will, when fully charged, supply power for 

about 12 hours continuous use. The battery voltage is monitored by a micro-power sensor 

which, when the voltage is near to discharged state, will cause an LCD to flash. When the 

instrument is used on the 95/125V or 190/250V, 50-60Hz AC mains, a built in constant current 

charger will continuously trickle charge the battery, or the full charge can be enabled when the 

battery is fully discharged. 

2.4.1.6 Outputs 

Available from BNC sockets on the rear panel are: an analogue pulse with a length equal to the 

transit time; an oscilloscope output that provides an exact copy of the received signal for 

outputs up to 0.4V; and a positive trigger pulse of 3.5V with a rise time of 2 s which is 

synchronised with excitation pulse onset. 

2.4.1.7 Transducers 

The transducers consist of lead zirconate titanate (PZT4) ceramic piezo electric elements in 

stainless steel cases. The elements are tightly held on the inside face of the case to provide 

good acoustic transmission. The transducer assembly is sufficiently robust to withstand 

conditions experienced in the field. Fig. 2.8 shows a schematic of the PUNDIT transducer 

internals. The shock excitation provided by the pulse generator causes the transducer to vibrate 

at its own natural frequency, governed by the size and stiffness of the whole transducer 

assembly. Different sizes of piezo electric element and case enable a range of transducer centre 

frequencies from 24kHz to 200kHz suitable for testing of concrete. To achieve maximum pulse 

amplitude that helps to overcome the attenuating characteristics of concrete, the transducer 

vibrations are minimally damped, so as to maximise the energy content within a narrow band 

of the centre frequency. As such, a long train of pulses is supplied by the transmitter, where the 

rise time to maximum amplitude, and the number of cycles produced before signal decays to a 

minimum, are inversely proportional to the bandwidth. Apart from the standard transducers, 

exponentially shaped conical probes are available which make a point contact, being suitable 

for coupling to rough surfaces or awkward geometries. An additional receiver amplifier is 

recommended due to the significant reduction in received signal amplitude. For the rapid 

inspection of smooth surface materials such as granite or marble, 78kHz and 370kHz wheel 

probes are available. All transducers are fitted with a cable socket to allow the use of co-axial 

cables of different lengths. 



 50

2.4.2 Operation of apparatus 

The operation of PUNDIT complies with recommendations given in BS1881:Part 203. 

Operation can be divided into the following stages; 

2.4.2.1 Set reference 

Prior to use, the apparatus should be calibrated. There is an inherent time delay in circuitry that 

must be removed for accurate evaluation of signal transit times. The delay is removed by a 

calibration procedure that employs a reference bar. The PRF switch should be set to 10pps. A 

smear of grease is applied to both transducer faces, and the transducers are then firmly pressed 

on to the ends of the bar, and excited by the PUNDIT. The SET REF control is then adjusted 

until the time value stamped on the reference bar is read on the LCD. For maximum accuracy 

it is recommended the LCD be set to the 0.1 s range. 

2.4.2.2 Applying couplant, surface preparation 

Good acoustical coupling between concrete surface and the face of the transducers is essential. 

Mediums such as silicone grease, medium bearing grease or liquid soap are ideal for smooth 

surfaces, and water pump grease or thick petroleum jelly for rough surfaces. Air pockets must 

be eliminated and transducers should be thoroughly cleaned and a new film of couplant 

applied in-between tests. If the concrete surface is very rough then it may have to be ground 

smooth, or filled with a suitable quick setting mortar. For application to awkward profiles such 

as the internals of tubular structures, the use of an exponentially tipped probe is recommended. 

2.4.2.3 Inspection technique and interpretation of results 

BS1181: Part 203 suggests that the basic transducer configurations as shown in Fig. 2.9 are 

1) Opposite faces (direct through transmission), which allows the maximum transfer of 

energy between transducers, and so should be used when ever circumstances permit; 

2) Adjacent faces (semi-direct transmission); 

3) Same face (indirect transmission), which leads to only a small percentage of the 

transmitted energy arriving at the receiver. 

It is recommended that the pulse velocity technique is most valuable for determining concrete 

uniformity. Heterogeneities such as variation in materials, mixing, and compaction in a 
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concrete structure will cause variations in measured pulse velocity. The preferred configuration 

is required so as to be able to mark out a regular grid pattern on opposite faces of the concrete 

structure as shown in Fig. 2.10. Viscous couplant is then applied to each grid point so as to 

facilitate signal transmission. The transducers are then applied in through transmission 

configuration to each grid point. The PUNDIT apparatus is used to excite one of the 

transducers and the received signal for the other is monitored to determine the signal transit 

time. The equipment displays the indicated time and this is recorded. Due to the difficulties in 

achieving consistent coupling, it is recommended that readings at each point be repeated until a 

minimum value is obtained. Once the completed grid has similarly been inspected, the results 

are often plotted as a 2D surface map as shown in Fig. 2.11. The variations in pulse velocity 

displayed on the contour map are then used to identify areas of concern.  

The measured pulse transit time can be influenced by [Malhotra and Carino (1991)]; 

a) Aggregate size, grading, type and content. The higher the aggregate-cement ratio, the 

lower the compressive strength of the concrete and hence the lower the pulse velocity 

b) The degree of hydration.   

c) original water-cement ratio. Lower proportions of cement lead to lower compressive 

strengths.

d) The degree of compaction. Pulse velocity is related to density. Inadequate compaction 

such as honeycombing will result in a decrease in pulse velocity   

e) Moisture content, where the pulse velocity may be up to 5% higher in wet concrete than 

through the same dry concrete, since the velocity in water is faster than it is in air. 

f) Presence of voids of greater dimensions than signal wavelength results in lower transit 

times, since the sound would have to defract around these. 

g) Presence of reinforcement, where providing their orientation is known, correction factors 

can be applied [BS 4408, Part 5]. 

h) Path length, where for concrete with 30mm size aggregate it is not recommended to have a 

path length below 100mm, and with increasing distance the apparent velocity decreases. 

It is suggested [Tomsett (1992)] that for tests conducted on a single concrete block, a pulse 

velocity deviation of 1.5% would indicate good construction standards. When testing a 

complete structure this value could increases to 6-9% and still indicate good standards overall. 

By contrast, Bungey [1991] reports that the presence of alkali-silica reaction (concrete cancer) 

can reduce the pulse velocity by 20%. In general, defects or deterioration are located by greater 

deviations in pulse velocity on the contour map. Decisions concerning the seriousness will 

nominally require an estimate of concrete strength, where it is preferable to resort to partially 

destructive methods, or core sampling. 
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2.4.3 Summary 

Familiarisation with the PUNDIT pulse velocity test equipment was undertaken. The 54kHz 

transducers were disassembled and their design noted. The PUNDIT test equipment 

characteristics of  particular interest are: 

i)  For 50mm diameter transducers, when testing concrete, there are unlikely to be directional 

characteristics for transducers with centre frequencies below 80kHz, 

ii) The reference bar has a calibrated value stamped on it, which would appear to coincide 

with the time that a longitudinal wave would take to propagate along it. 

iii) The digitisation rate of 10MHz relates to an accuracy in measured time of arrival of 0.1 s;

iv) The transducers are narrow band, such that they ring on for a number of cycles. 

v) The shock excitation pulse is allowed to decay in time, which presently has an unknown 

effect on the pulse shape. 

vi) The signal transit is determined from the time when the received signal goes above a 

250 V threshold. As the signal decreases in amplitude towards the threshold value, the 

threshold will be triggered off a later phase of the received signal. If the amplitude of the 

first half cycle falls below 250 V, then a later period of the signal of sufficient amplitude 

will trigger the circuitry. 

vii) To enable good acoustic coupling, a layer of couplant must be applied to the transducer 

faces. This is inconvenient to apply and to remove, and it is difficult to obtain consistent 

coupling. 

2.5  Conclusion 

The material characteristics of concrete have been investigated. It was noted that concrete 

properties are extremely variable due to the plethora of mixes and fabrication practices that are 

possible. At present civil engineering has the greatest confidence in the most destructive 

methods of test. Their disenchantment with non-destructive methods results from the 

occasional exaggerated claim of the performance of a technique. For a non-destructive test to 

be accepted would predominantly require that its results are not ambiguous, costs involved 

with its use are low, and it should be convenient and rapid to employ. The ultrasonic pulse 

velocity method was identified to satisfy the cost requirement, but have room for improvement 

concerning reliability of results and convenience of application. It was decided to modernise 

the pulse velocity technique by addressing these limitations. 
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Figure 2.9. Configurations for pulse velocity measurements. (a) Direct through transmission method 
(b) semi Indirect method  (c) Indirect surface method 

Figure 2.10. Schematic of grid pattern marked out on concrete structure for the determination of 
concrete uniformity. 
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Figure 2.11. Plotting signal transit times for each grid point as a 2D surface map to aid the 
identification of problem areas. 
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Chapter 3 

Correction of measured transit times for apparatus such as the PUNDIT 

3.1 Introduction 

It is generally recognised that the most valuable use of pulse velocity measurements in concrete 

is for a comparative study to aid the indication of problem areas [Sansalone and Carino (1991)]. 

Not withstanding, a number of concrete inspection techniques have been developed that require 

an accurate evaluation of the absolute velocity of sound in concrete. To achieve this, various 

correction functions to the measured pulse velocity are given to correct for temperature and 

influence of reinforcement bars [BS1181: Part 203 (86)] for example. Minimum path lengths are 

recommended that depend on the signal wavelength, below these values the measurement of 

pulse velocity becomes unreliable. Additionally, for apparatus such as the PUNDIT that uses 

threshold crossing to evaluate received signal arrivals, there is evidence [Bungey and Millard 

(1996)] that the measured pulse velocity varies as a function of the path length inspected. The 

same effect was communicated to the author [Ballard (1996)] during a meeting with G. Ballard 

of GB Geotechnics Cambridge, a company that specialises in civil engineering non destructive 

testing. By contrast, the reduction in measured pulse velocity as a function of path length is 

suggested to be usually small [BS1181:Part 203 (86)] and well within recommended time 

tolerances. The purpose of the work reported in this chapter was to estimate the extent of the 

pulse velocity measurement error and to recommend a correction function when using the 

standard commercial transducers. 

3.2 Description of anomaly for narrow band transducers 

The effect of the greater attenuation of high frequency components of the received pulse is 

described in [BS1181:Part 203 (86)]. The result is said to be a less clearly defined pulse onset, 

such that the apparatus triggers off a later phase of the received signal. It is suggested that for 

path lengths of 100mm to 3m, the error in pulse velocity measurement due to the loss of 

frequency components is well within the ±1% time tolerance recommended. For apparatus, such 

as the PUNDIT, that uses threshold crossing, the measured pulse velocity is reported by Bungey 

and Millard [1996] to reduce by a value of 5% for path lengths between 3m and 6m. The author 

suggests that this anomaly is directly related to the loss of signal amplitude. As the path length 

tested increases, so the signal amplitude decays due to the effects of beam spreading and 

material attenuation. As the signal amplitude decreases the point on the signal, which coincides 
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with the threshold value will then occur at a later phase and so the received signal is perceived 

to arrive later.

To illustrate the suggested effect a typical signal that the PUNDIT apparatus would receive was 

obtained experimentally. The standard 54kHz PUNDIT transducers were coupled in through-

transmission configuration to a 100mm thick aluminium block whose lateral dimensions were 

sufficient such that any reflections off boundaries should not interfere with the received first two 

cycles. The PUNDIT apparatus 500V pulse was used to excite one of the transducers while the 

received signal from the other was averaged on an oscilloscope. The averaged received signal 

a(t) is shown in Fig 3.1 where the first half cycle has additionally been halved in amplitude and 

shown as a(t)/2. If a horizontal line is drawn which represents an arbitrary negative threshold 

crossing, then it is straightforward to see that the threshold is crossed later for the lower 

amplitude signal. For this case, the function shown in Fig. 3.2 illustrates what the PUNDIT 

measured transit time would be as a function of the maximum amplitude of the received first 

half cycle. If the amplitude of the first half cycle falls below the 250µV PUNDIT threshold, then 

the measured transit time would jump almost one period of the received signal as the apparatus 

triggers off the portion of the signal up to the next negative peak. For 54kHz wave propagation 

in unbounded material this appears to be the extent of the problem since it has been observed 

that all following negative peaks are of lower amplitude. However, if as in Fig 3.1 the material 

is bounded then the possibility of constructive interference of reflections might result in some 

additional peaks of higher amplitude. It was recognised that any correction function should be 

simplistic in nature for it to be practical, such that the system will be considered non dispersive 

and the dimensions of the media will be greater than the signal wavelength. 

In order to estimate the extent of the effect and to provide a correction function for propagation 

in unbounded media it was found necessary to predict the signal decay as a function of path 

length tested and have an approximation that describes the profile of the early part of the 

received signal. To accomplish this, the following sections describe: modelling the loss of signal 

strength due to beam spreading, the experimental determination of the loss of signal strength 

due to material attenuation and the approximation of transfer functions. From these 

investigations it was possible for a given aggregate size to predict the variation of measured 

velocity as a function of path length, and to provide a general correction function. 

3.3 Signal losses due to beam spreading 

As acoustic energy spreads out into a medium so the magnitude of the disturbance at the wave 

front decreases by some function to satisfy the principle of energy conservation. The acoustic 

field that arises from an ultrasonic transducer can be modelled according to Huygens’ principle 
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[Graff (1975)], which states that any linear wave phenomenon can be analysed by the 

superposition of simple sources properly selected in phase and amplitude to represent the 

physical situation. A simple source is a point source which radiates spherical waves in three 

dimensions and cylindrical waves in two dimensions. The two dimensional approximation 

assumes plain strain which is not appropriate for this problem. Therefore only the characteristics 

of spherical radiation will be reviewed. For this work the modelling of the acoustic field 

generated by an ultrasonic transducer will be greatly simplified by making the following 

assumptions: 

1) The transducer operates in a uniform manner across its surface, such that it may be 

considered as a simple piston source, 

2) Only compression waves are radiated from the transducer, which is a reasonable far field 

approximation, 

3) For the narrow band transducers the excitation can be approximated as being continuous 

(steady state) at a single given frequency, which in the far field is a reasonable 

approximation [Rose (1999)], 

4) Wave amplitudes are small, such that the propagation of sound in the medium can be 

described by first-order equations, which allows the system to be linear, 

5) The medium that supports the acoustic field can be considered as an isotropic, 

homogeneous infinite half space. This is an acceptable assumption even for concrete if the 

interacting signal is of a wavelength greater than the aggregate size. 

3.3.1 Spherical radiation approximation 

The derivation of losses due to beam spreading is well known but is included here for 

completeness. Following the approach of Junger & Feit [1986], the three dimensional wave 

equation can be written as  
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where p is the time dependent sound pressure,  the density of the medium, B the bulk modulus 

and 2 represents the Laplacian operator. For spherical coordinates as shown in Fig 3.3, where 

the field is independent of angles  and , the Laplacian operator takes the form 
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For steady state conditions, equation 3.2 can be written in terms of the wave number k, in the 

form of a Helmholtz equation given as 

022 pk         3.3 

The complex wave number is given as 

   

ik         3.4 

where
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c
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is the real part that relates frequency  and velocity c to wave length , and  is an attenuation 

constant with the units of Nepers/metre. Substituting equation 3.3 into equation 3.2 gives 
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The pressure satisfying this equation is one-dimensional, in that it depends on a single co-

ordinate R. It can be verified that the general solution of this equation is 
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The first term in equation 3.7 represents outgoing waves and the second term represents waves 

that converge on the source. Since it can be shown that converging waves do not arise in an 

infinite half space the (e-ikR) term can be ignored. Thus from equation 3.7 the pressure amplitude 

a distance R from a point source is given as 
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where it can be seen that the pressure amplitude decays with increasing distance from the source 

R which is defined as spherical spreading loss. An axi symmetric transducer of radius a as 

shown in Figure 3.4 can be approximated by a finite number of point sources, where each point 

source represents the elemental area 

rdrddA          3.9 
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For a general Cartesian point in the acoustic field, the pressure amplitude that arises from a 

finite number of point sources is obtained by substituting equation 3.9 into equation 3.8 and 

integrating over the transducer face 
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where the subscript 1 refers to a point on the transducer face and subscript 2 refers to a point in 

the field. The function Ar represents the axi symmetric amplitude distribution over the 

transducer face, which for a piston transducer is a constant. An analytical solution to equation 

3.10 is not trivial and so it is often solved numerically.  For a flat face transducer radiating into a 

non attenuating medium, a simplified solution can be given for the on-axis pressure distribution. 

For this case x2= y1 =z2=0, and because of the axi-symmetric location of the field point, the 

integration becomes unnecessary, such that x1=0 and z1=r, and setting y2=y, results in 
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By setting u= 22 ry   equation 3.12 becomes 
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The exponential can be combined into a sine term by the use of trigonometric identities giving 
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where p0 is the pressure at y=0. The characteristics of equation 3.14 are that, the magnitude of py

fluctuates up until a last maximum known as the near field or Fresnel zone, and then decays at 
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the rate y-1 in the far field or the Fraunhofer region. The location of a maximum or minimum is 

when
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where m is an odd integer for a maximum and an even integer for a minimum. The last 

maximum at y=N, occurs for m=1, such that equation 3.15 becomes 
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where d is the diameter of the transducer. The diameters of the PUNDIT supplied transducers 

are 50mm for 24, 37 and 54kHz transducers and 33mm for the 82kHz transducer. The pulse 

velocity for ordinary concrete can be taken to be 3660m/s [Naik and Malhotra (1991)]. 

Applying this data to equation 3.16 results in a negative value of N for all cases. This reveals 

that all the standard transducers can be considered to act as a point source, or in other words 

only far field approximations apply. For ranges in excess of 3N from the transducer face, the 

approximations sin x =x and nxx
n 11  can be used, such that equation 3.14 can be 

simplified to 
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which describes spherical spreading loss as in equation 3.8. Alternatively if the pressure is 

known at some distance R in the far field, then the pressure at y further along can be given as 
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3.4 Signal losses in concrete due to material attenuation 

The conventional pulse echo technique for measuring sound attenuation in materials such as 

metals requires the reception of multiple echoes in the thickness direction of the material under 

test [Papadakis (1990)]. For assessment on concrete, the pulse echo technique is impractical 

since scattering off aggregate interferes with returning pulses. A through transmission technique 
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was devised for this work where the amplitudes of signals propagated in aluminium were 

compared to those for concrete. From equation 3.8, the ratio of the signal amplitude for concrete 

pc over the reference signal amplitude for aluminium pa is given as 
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where a, a, ya and c, c, yc represent the attenuation coefficient, real wave number and path 

length for aluminium and concrete respectively. If the signal amplitudes are compared at the 

same phase t and the attenuation in aluminium is considered negligible at kHz frequencies 

then in terms of c and units of Nepers/m (an abbreviation of Napier who introduced logarithms) 

equation 3.19 reduces to 
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where the constant A represents differences in beam spreading (far field approximation) together 

with variations in the acoustic coupling of transducers. The evaluation of the constant A is not 

trivial, and it is reported [Bungey (1991)] that attenuation measurements are extremely sensitive 

to the quality of contact made between transducers and concrete surface.  

Attenuation mechanisms can be attributed to beam spreading, absorption and scattering . Beam 

spreading was explored in the previous section. Absorption is said to indicate the quantity of the 

ultrasonic energy transformed into heat [Fay (1991)]. Three regimes of scattering are given that 

relate to the ratio of the object diameter to the signal wavelength. When the diameter of the 

scatterer is very small compared to the ultrasonic wavelength then Rayleigh scattering occurs. 

Here the scattered fields off the objects interact with each other and it is more convenient to 

consider the interaction of the wave with all the objects. Losses due to Rayleigh scattering are 

said to increase with the 4th power of frequency [Fay (1991)]. When the object diameter is of the 

same order of magnitude as the wavelength then stochastic scattering occurs. Here the scattered 

field is strongly directionally dependent and the extent of the scattering is said to increase by the 

2nd power of the frequency. When the object is large compared to the wavelength each object 

has its own scattering field. Termed diffuse scattering, most of the incident energy is scattered 

back off the object and is independent of the frequency. It is usual for the coarse aggregate in 

structural concrete to have an aggregate size of 20mm. From the set of standard transducers and 

wave velocity described above, using the appropriate 54kHz transducers would result in a wave 

propagating in concrete with a wavelength of 68mm. For such an object wavelength ratio, this 

would place the scattered field in the Rayleigh scattering regime. 
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Curves that relate frequency f, mean diameter of scatterer D, to attenuation , generally take the 

following form [Krautkramer & Krautkramer (1968)]; 

43 fbDaf         3.21 

which is valid for /D>3. If this condition is fulfilled and it is assumed that the second term will 

prove to be negligible compared to the first, then  would be proportional to f. For an 

experimental set of data that shows this linearity, the evaluation of the constant A in equation 

3.20 becomes unnecessary, since a fitted straight line to this data will have the same slope 

whatever the value.

Very little information was found on concrete attenuation, which is not surprising since there is 

an extensive range of mixes possible. In general attenuation coefficients for concrete are given 

for specific transducer centre frequencies such as 7 to 13 Nepers/m at 200kHz [Kaye and Laby 

(1995)] which is not very useful. Some experiments were therefore conducted on three different 

concrete blocks that could be said to represent typical mixes encountered. The fully cured 

sample concrete blocks were of 200mm diameter and 300mm long and were made up with 

compositions shown in Table 3.1. In general the samples can be described as mortar, and 

concrete with 5mm or 10mm aggregate where the aggregate had been graded by a process of 

sieving. When obtaining data for the concrete samples it was found that the most favourable 

signals were acquired for transmission through the diameter mid way along the length as shown 

in Fig 3.5. The transducers used for this work were a pair of Alltran compression transducers 

[Alleyne (1991)] that were originally developed for the inspection of process pipe-work. The 

active element area is approximately 3mm by 14mm and in general these transducers are often 

excited by tone burst with a centre frequency in the region of 60kHz to 80kHz. The transducers 

are broad band in this region since they are operated away from their approximate 150kHz 

resonance frequency. With this and  /D>3 in mind the excitation used was a 5 cycle tone burst 

at centre frequencies of 50 to 130kHz at increments of 5kHz. The reference signals were 

obtained by propagating the same signals in a 300mm diameter 300mm long aluminium bar. 

Signal attenuation in the aluminium bar can be considered negligible, such that reflections off 

boundaries could significantly interfere with the received signal. This effect was reduced by 

coupling the transducers off centre at either end of the bar in the configuration shown in Fig 3.6. 

Over the range of frequencies of interest, the amplitudes of the first and second received 

positive peaks after propagation in aluminium are shown in Fig. 3.7. For the evaluation of the 

attenuation coefficient, the amplitudes of the set of signals propagated in a concrete sample 

were compared to the reference signals. Equation 3.17 suggests the longer path length and 

greater wave velocity for the aluminium bar will result in greater signal losses due to beam 
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spreading. This however is accounted for in the constant A in equation 3.20 and is of no 

concern. An example of the 80kHz centre frequency received signal for 5mm aggregate 

concrete (continuous line) compared to that for aluminium (dashed line) is shown in Fig 3.8. For 

this case, signal losses due to beam spreading in the aluminium bar, given by equation 3.17, are 

approximately 3 times greater than for propagation in the shorter concrete block. If the losses 

due to material attenuation in concrete are of lower magnitude than the relative losses due to 

beam spreading, then the received signal in aluminium will be of lower amplitude than for 

concrete. This is the case for the example shown in Fig. 3.8. 

The experimental results for the mortar, 5mm and 10mm aggregate concrete are shown in Fig 

3.9, Fig 3.10 and Fig 3.11 respectively, where circles represent the attenuation coefficient (f)

evaluated by comparing the amplitude of the first positive peak and triangles for evaluation by 

the second received peak. A straight line has been fitted to the data points and the constant A

adjusted so that the data is separated for clarity. All results obtained using the ratio of the first 

peaks show good agreement to the assumption that for /D>3 the attenuation coefficient for 

concrete can be considered as a linear function of frequency. In general this approximation 

improves for more highly attenuative materials since any interfering scattering or reflections off 

boundaries can be considered to have been significantly attenuated. The evaluated attenuation 

coefficients for the samples are listed in Table 3.2 along with the evaluated actual longitudinal 

bulk velocity. The actual bulk velocity was determined by establishing the time delay between 

the received signal when the transducers were coupled together and the received signal that had 

propagated down the block. 

3.5 Modelling received signal 

This section reports on the derivation of simplistic time domain functions that describe the 

profile of the early part of the signal received by the PUNDIT transducers. A schematic of the 

transfer function for the transducers coupled to a medium is shown in Fig. 3.12, where in the 

time domain; 

f(t) represents the PUNDIT electrical input signal, 

h1
-1(t) is the transducer transfer function that converts an electrical impulse signal into a 

mechanical displacement, 

c(t) is the impulse response of the coupling and medium in which the signal propagates, 

h2(t) represents the transducer transfer function that converts an mechanical impulse into an 

electrical signal,  from which the output is given by the convolution product 

thtcthtftg 2
1

1        3.22 
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The transfer function h2(t) can be obtained by the pencil lead break test [Berthelot et al. (1993)], 

but obtaining h1
-1(t) is not so straightforward. For simplification it will be assumed that the 

frequency response of the coupling medium is flat, such that c(t) can be approximated by a 

Dirac function with the effect of introducing a time delay. The transfer functions h1
-1(t) and h2(t)

can then be lumped together as h(t) which can be obtained by through transmission coupling the 

transducers to a non dispersive system, exciting one with a near impulse and recording the 

output from the other. The Convolution Theorem [Randall (1977)] states that a Fourier 

Transform (either forward or inverse) transforms a convolution into a multiplication and vice 

versa. The forward Fourier transform of g(t) that represents the transducer-transducer electrical 

output can then be given in a more convenient form as 

fHfFfG         3.23 

where H(f) refers to the electrical impulse response of the transducer-transducer arrangement 

and F(f) the PUNDIT excitation pulse.  

Since the PUNDIT transducers are narrow band in nature, h(t) can be approximated by a 

function that has been used for modelling similar acoustic emission signals [Perez (1997)], 

where a carrier signal of centre frequency o is modulated by a window function and is given by 

tetth t
0sin         3.24 

where ,  and  are constants. The modulation is characterised by an exponential decay, a non 

zero rise time and attains a maximum amplitude at the time 

o

t          3.25 

such that the magnitude of  is chosen to obtain the desired maximum amplitude at this time. 

The PUNDIT excitation pulse is characterised by the discharge of a capacitor which is 

commonly approximated by the function  

tAetf  for 0t         3.26 
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where  is the time constant which is inversely proportional to the product of circuit resistance 

and capacitance. With a 54kHz transducer acting as a load, the excitation pulse from the 

PUNDIT apparatus was monitored as shown in Fig. 3.13. By fitting an exponential curve to the 

experimental data an approximate value for the time constant was found to be 24000 s-1.

To assess what the characteristics of the output g(t) might be, it is convenient to apply the 

forward Fourier transform to equation 3.26 such that 

dteeAfF ftit

0

2

dteA tfi

0

2

0
2

2
tfie

fi

A

2/21

/21

f

fiA
fF         3.27 

Since equation 3.27 is complex, application to equation 3.23 will result in the phase of the 

output G(f) differing to that for the impulse response H(f) by some function of frequency. By 

applying the experimentally evaluated time constant to equation 3.27 the phase shift can be 

predicted which is shown in Fig 3.14. It can be seen that in general the PUNDIT excitation 

applies a near /2 phase lag to the transducer response. This effect has important consequences 

on the profile of the received signal, particularly up to the first negative peak. Fig 3.15 shows 

the normalised approximations for the PUNDIT excitation f(t), the transducer-transducer 

impulse response h(t)  and the resulting output g(t). It can be seen that the first negative peak of 

g(t) coincides with the phase ot  of h(t), after which g(t) lags h(t) by approximately /2

radians. Rather than try to find a function to approximate the complete received signal, it is 

simpler to approximate the signal for the first two negative peaks separately. This is all that is 

necessary for the aim of the analysis. Appropriate functions were found to be 

t
P

tg 0cos1
2

  for t0     3.28 

Pmttg
2

5
sin 0    for 3

2

5
0t   3.29 
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where P and Pm represent the magnitude of the first and second negative peaks respectively. 

Since equations 3.28 and 3.29 are derived for narrow band signals they can be said to be valid 

for the 24kHz to 82kHz range of narrow band commercial transducers. For comparison, Fig 

3.16 shows good agreement between equation 3.28 and the early part of the experimental 

received signal that was shown in Fig. 3.1. 

3.6 Correction for the variation in measured pulse velocity 

The proposed correction function assumes that the threshold is triggered by the received signal 

up to the first negative peak as in Fig 3.1. For triggering off the first negative peak, if we take 

the output g(t) to equal the threshold value PTH =250µV and rearrange equation 3.28, then the 

predicted additional transit time tP that corresponds to the point where the signal will cross the 

threshold can be given as 

0

1 12
1cos

P

P
t TH

P        3.30 

where P is the amplitude of the first negative peak and o is the transducer centre frequency. 

Equation 3.30 is the proposed function for correcting the variation in measured pulse velocity, 

which as intended is simplistic in nature to allow its use. However, practical application would 

require that the amplitude of the first negative peak P be known for which present commercial 

apparatus has no current standard facility.  

3.7 Predicting the variation in measured pulse velocity 

It has been shown that for a typical concrete type medium, commercial transducers operating in 

the frequency range of 24kHz to 83kHz can be considered to act as a point source. Experimental 

results found that ultrasonic attenuation in concrete can be considered to be a linear function of 

frequency for /D>3. For the prediction of the signal amplitude py as a function of path length y,

the signal losses due to attenuation can then be applied to equation 3.18 to give 

fy
Ry e

y

R
pp         3.31 

where pR is the signal amplitude at a distance R from the transducer due to beam spreading only. 
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Setting the amplitude of the first negative peak to P =py and substituting equation 3.31 into 

equation 3.30 gives the predicted additional transit time that will be measured as 

0

1

2

12
1cos 0
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R

y

p
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t

yf

R

TH
P   for Tp y    3.32 

which is valid if triggering off the received signal up to the first negative peak. Predictions 

showed that if the magnitude of the first negative peak falls below the threshold then it would be 

possible to trigger off the signal up to the second negative peak. The magnitude of the second 

negative peak can be given as mpy where m is the ratio of the second over the first negative 

peak. When triggering up to the next negative peak  py <T< mpy  the predicted additional transit 

time is obtained from equation 3.29 in a similar manner as before and is given as 

0

1

2

1

2

5
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f
e
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y
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R

TH
mP   for  py < T <  mpy  3.33 

In section 3.2, the 500V excitation pulse was propagated in a 100mm thick aluminium block, 

and the received signal monitored which is shown in Fig 3.1. Within the frequency range of 

interest, material attenuation in aluminium can be considered to be negligible. For an 

approximate value of PR it is therefore reasonable to use the experimental value obtained for the 

magnitude of the first negative peak of the signal propagated in aluminium. Thus at R=100mm, 

for the maximum 1000V excitation an appropriate value is pR= 8V. In fact the exact value is not 

critical since losses due to beam spreading and material attenuation soon become dominant. 

Additionally from these results an approximate value for the ratio of the second over the first 

negative peak of m=1.5 was obtained. If we take the actual longitudinal bulk velocity of the 

material as cL, (evaluation of cL is described in section 3.4) then the predicted variation in 

measured pulse velocity cL(y) as a function of path length tested y will be given as 

L

PL

L c
tcy

y
yc  for y      3.34 

Using the evaluated attenuation coefficients and actual velocities for the samples as in table 3.2, 

the predictions for the variation in measured velocity as a function of path length tested for the 

mortar, 5mm and 10mm concrete samples are shown in Figures 3.17 through to 3.19. For the 

short path lengths tested, all plots are typified by the measured velocity initially increasing as a 

function of path length, particularly so for the mortar predictions. This effect has been 

confirmed experimentally [Bungey (1980)] and is probably part of the argument that leads to the 

recommendations of minimum path lengths that can be inspected [BS1181:Part 203 (86)]. After 
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the initial rise the measured pulse velocity as a function of path length tested flattens off. In this 

region it is predicted that the actual velocity in the material will never be measured. Following 

this, the predicted measured pulse velocity falls rapidly which corresponds to when the signal 

amplitude of the first peak falls below the magnitude of the threshold. The apparatus no longer 

recognises the first arrival and will then be triggered off the second negative peak. The predicted 

measurement error for the 37kHz and 24kHz transducers applied to 10mm aggregate concrete in 

Fig  3.19 is about –4.4%. A typical reduction of the measured velocity of 5% for a path length 

between 3m to 6m is reported [Bungey (1996)]. Thus the predictions for this case have 

confirmed that the extent of the anomaly is indeed as published. 

Generally, if the threshold is being triggered off the received signal up to the first negative peak, 

then the order of the variation is predicted to be in the region of a 1% reduction, which is 

recommended in [BS1181:Part 203 (86)]. To ensure triggering off the early part of the signal, 

since the second negative peak was shown to be about 1.5 times the magnitude of the first, any 

received signal below twice the threshold value should be rejected. Like the proposed correction 

function this would require the apparatus to determine the received signal amplitude, which it 

presently does not have the capacity to do. 

3.8 Conclusion 

An investigation was conducted to estimate the extent of the reported anomaly that the pulse 

velocity measured by threshold crossing, such as is done by the apparatus PUNDIT apparatus, 

varies with the path length tested. The intention was to recommend a correction function for the 

standard narrow band type transducers.  

The change in pulse shape as a function of distance propagated was modelled by considering 

signal losses and transducer and excitation characteristics. The commercial transducers have 

been shown to act as a point source such that the signal experiences spherical beam spreading as 

it propagates. Experiments were conducted to evaluate material attenuation in three samples that 

could be said to represent typical concrete mixes encountered. Attenuation coefficients in 

mortar, 5mm and 10mm aggregate concrete samples were found to be adequately approximated 

by a linear function of frequency for signal wavelengths greater than three times aggregate size. 

The transfer function of the PUNDIT transducers was investigated where it was found that the 

first half cycle of the received signal lasts for approximately twice the normal time period.  

For the early part of the received signal up to the first negative peak a correction function was 

proposed which would require the amplitude of the peak to be known. The function was 
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simplistic in nature so that its calculation could be achieved by relatively unskilled labour with a 

common calculator. However, the current standard PUNDIT apparatus does not have the facility 

to determine signal amplitudes so some additional equipment or modification would be 

required.

The research on signal losses due to beam spreading and material attenuation was applied to the 

correction function so as to estimate the extent of the anomaly. It was found that as long as the 

threshold is triggered off the received signal up to the first negative peak the measured velocity 

would be only about 1% lower then the actual, which is the British Standard recommended 

limit. However if the magnitude of the first negative peak is below the threshold then triggering 

off the second negative peak is possible. It is confirmed that for this case reductions in the pulse 

velocity of around 5% are likely for path lengths of 3 to 5m. 
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Figure 3.14. Phase(f) of Pundit 500V 
excitation pulse. 
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Figure 3.17 Prediction of measured bulk 
velocity as a function of path length tested 
using Pundit transducers when testing mortar. 
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Figure 3.19 Prediction of measured bulk 
velocity as a function of path length tested 
using Pundit transducers when testing 10mm 
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mix Mortar concrete 5mm 
aggregate

concrete 10mm 
aggregate

5mm aggregate  2.5 kg  

10mm aggregate   2.5 kg 

Builders sand 2.0 kg 1.0 kg 1.0 kg 

Cement 2.222 kg 1.111 kg 1.111 kg 

Added water 0.788 kg 0.389 kg 0.389 kg 

Total 5.0 kg 5.0 kg 5.0 kg 
Added water/cement ratio 0.35 0.35 0.35 

Table 3.1 Composition of concrete samples for evaluation of attenuation coefficients 

mix Mortar concrete 5mm 
aggregate

concrete 10mm 
aggregate

Attenuation coefficient
(kHz Nepers/m) for /D>3

0.012 0.0454 0.0568 

Longitudinal bulk velocity cL 3898m/s 3888m/s 3864m/s 

Table 3.2 Attenuation coefficients and velocities evaluated for concrete samples 
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Chapter 4 

Validation of PUNDIT calibration procedure 

4.1 Introduction 

There is an inherent time delay in the circuitry of the PUNDIT apparatus that must be removed 

for the accurate determination of signal transit times. Calibration is achieved using a reference 

bar on which a time value is stamped. The question arises as to what mode of wave 

propagation the transit time stamped on the bar refers to, is the value correct, and does the 

technique itself introduce errors. The purpose of this chapter is to validate this calibration 

procedure theoretically and experimentally and to make recommendations as required. Axi 

symmetric finite element models were used to model wave propagation in a finite length of 

bar. The interpretation of model and experimental results required employment of signal 

processing techniques that are suitable for analysing dispersive signals. A wavelet and Hilbert 

transform technique have been developed to extract group velocity from linear chirp type 

signals. These techniques are presented within Appendix 1 where they are compared to the 

established phase spectrum method. 

4.2 Reference bar description 

The method of determining the transit time between pulse onset and reception by the PUNDIT 

apparatus is described in detail in section 2.4.2. Briefly, when the two transducers are coupled 

face to face, separated by a thin film of grease, we can consider the path length to be zero. For 

this set up the circuitry measures an inherent time delay of typically 2 s. To correct for this 

condition the transducers are first coupled to a reference bar. The set reference control knob on 

the front panel of the apparatus is then rotated (the position of which determines the duration 

over which the counter is initially inhibited) until the LCD display reads a time value that is 

stamped on the bar. If the calibrated value stamped on the bar is in error by a value greater than 

typically 2 s then the calibration procedure itself will introduce errors. 

An illustration of the reference bar supplied with the standard apparatus is shown in Fig. 4.1. It 

consists of a 50mm diameter aluminium portion of length La equal to 153mm, to which at each 

end is bonded marginally smaller diameter brass protection discs of thickness Lb equal to 

3mm. The dimensions are probably chosen to suit the 50mm diameter transducers and 153mm 

is equivalent to the imperial length of 6 inches. A calibration value of tcal= 25.8 s is stamped 
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on the bar, which can be shown to relate to the time it would take a bulk longitudinal wave to 

propagate over the bar length. The nature of bulk and guided waves will be investigated in the 

sections that follow. The approximate bulk longitudinal velocities for aluminium c1a and brass 

c1b are 6328m/s and 4400m/s respectively. The time for a bulk wave to propagate through an 

unbounded body of the same lateral dimensions as the bar would be  
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which agrees somewhat with the value stamped on the bar.  

A simple experiment was performed to investigate whether the calibrated value stamped on the 

bar is valid. The 54kHz transducers were coupled face to face by a smear of grease. Excitation 

and reception was enabled using the PUNDIT apparatus. For this zero path length condition 

the apparatus LCD display was adjusted to read 0.1 s. The transducers were then coupled to 

the reference bar resulting in a reading of 26.0 s on the LCD display. Thus, the apparatus 

suggests that the reference bar acts as a 25.9 s time delay, which allowing for numerical 

rounding up agrees with the value stamped on the bar. It therefore appears that some energy is 

indeed propagating at the bulk longitudinal velocity and is of significant magnitude so as to 

trigger the 250 V PUNDIT threshold. 

The reference bar diameter is finite, which results in the bar acting as a wave guide, and so 

propagation of bulk waves cannot be assumed. In contrast to the bulk longitudinal and shear 

waves that exist in a boundless material, an infinite number of guided waves can exist in a 

finite structure. The velocity of propagation of a guided mode, unlike bulk waves, is a function 

of frequency. It is generally assumed that the maximum velocity that a wave can propagate in a 

bar is the bar velocity which for an aluminium bar corresponds to a value of 5120m/s. 

Classical solutions for what modes propagate in a bar assume steady state propagation in a bar 

of infinite length such that transient effects far from the source have decayed to zero. For a 

finite length of bar the accepted solution for guided waves may not be applicable, since 

sufficient interaction of bulk waves with the boundaries may not take place for mode 

conversion to provide the required axial and radial components. At what point the bar mode 

solutions are acceptable or ‘when is a bar a bar?’ is probably a function of the characteristics of 

excitation, bar diameter, and bar length. It is thus important to investigate the characteristics of 

wave propagation in bounded and unbounded media in order to verify the reference bar 

calibration value. 
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4.3 Wave propagation possibilities in the reference bar 

This section investigates the possible modes of wave propagation that might exist in the 

reference bar. The well known theory used to describe the characteristics of stress waves in 

unbounded media and infinitely long bars will be briefly described. Neither of these solutions 

fully describes the problem since the bar is obviously bounded and of finite length. However, 

the investigation will benefit from the analysis since no exact solution for wave propagation in 

finite bars is known by the author. Where possible vector analysis will be used since it allows 

formulae of continuum mechanics to be written in a much shorter form than would otherwise 

be possible. In all analysis, the material will be assumed to be homogeneous, isotropic, linearly 

elastic and non-absorbing, which is an acceptable assumption for the aluminium reference bar.  

4.3.1 Wave propagation in unbounded media – bulk waves 

Bulk waves exist in infinite homogeneous bodies and propagate indefinitely without being 

interrupted by boundaries or interfaces. The properties of these waves are determined by the 

relationships between propagation direction and the constitutive properties of the medium. It 

can be shown that within an unbounded isotropic medium only two possible waves can 

propagate, being longitudinal or shear waves. Longitudinal waves have polarisation directed 

along the propagation direction, whereas shear waves have polarisation normal to the 

propagation direction. The derivation of the bulk wave velocities comes in a variety of 

approaches where here we borrow from [Malvern (1969), Kolsky (1963), and Redwood (1960) 

for example]. Though essentially bookwork, presenting the derivation in the following manner 

forms useful background information. 

When an elastic body is deformed, the forces are transmitted within the body by means of 

elastic forces acting between neighbouring particles. The state of stress within the body can be 

defined by taking material particles to be small volume elements of some orthogonal 

coordinate system. Cartesian coordinates will be used where  x1, x2, x3, denote the directions as 

shown in Fig. 4.2. The force per unit area on a plane normal to the direction of the +x1 axis is a 

stress vector having three components, denoted by T11, T12, and T13. The first subscript denotes 

the normal direction of the plane, while the second identifies the vector component direction. 

Similarly, the forces per unit area on a plane area whose normals are in the +x2 and +x3

directions will have components denoted by T21, T22, T23 and T31, T32, T33 respectively. It may 

be shown that these nine stress components are sufficient to specify fully the state of stress for 

the element. Under triaxial loading, Hooke’s law expresses each stress component as a linear 

combination of all the strains given as 
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rsijrsij ScT        4.2 

where i can be 1,2, or 3, and where for a given i, the summation over the subscript j is 

understood; likewise with r and s. The nine equations given by equation 4.2 require a total of 

81 elastic constants cijrs, but not all of these are independent. For small displacement, the strain 

tensor Srs can be defined as 
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where u is the particle displacement. It should be noted that for convenience the factor of a half 

is present for the shear stains in contrast to the engineering definition, this will be corrected for 

in the next step. It can be seen from the definition of equation 4.3  that Srs is a symmetric tensor 

such that S21 can be replaced with S12  and so on. Symmetry of Tij and Srs reduces the number of 

independent elastic constant to 36 and enables a reduced notation with fewer subscripts to be 

used. The standard reduced notation for the strain tensor S can be expressed in matrix form 
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The notation for stress tensor T can be expressed as 
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The subscripts for the reduced notation follow a cyclic order such that 1,2, and 3 represent 

normal or longitudinal components while subscripts 4,5, and 6 are for tangential or shear 

components. The relation between stress and strain can now be conveniently represented by 

the following matrix equation 
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which in vector notation can be written as 

S:cT        4.7 

For an isotropic solid the coefficient matrix c requires just two independent elastic constants, 

and , known as Lamé’s constants and takes the form 

00000

00000
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0002
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    4.8 

For the equation of motion, we apply Newton’s second law of motion and the principle of 

conservation of mass to the elemental volume. Neglecting body forces (e.g. gravity), Euler’s 

equation of motion in vector form [Auld (19900] can be given as 

2

2 u
T

t
       4.9 

where  is the mass density, u the displacement vector and t is time. Substituting equation 4.7 

into equation 4.9 using the coefficients c from equation 4.8 results in the vector equivalent of 

Navier’s displacement equation of motion given as [Graff  1975 for example] 

2

2
2 u
uu

t
     4.10 

where 2 is the Laplace operator and the divergence of u defines the material dilatation given 

by 

321u SSS      4.11 

The phase velocities of the two possible waves can now be obtained, where for the 

longitudinal wave velocity c1 a divergence  is performed on equation 4.10 to give 
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Recognising the identities uu
222 ,  and that u  reduces equation 

4.12 to 

2

2
22

t
      4.13 

which describes the propagation of the dilatation  by a velocity c1 given as 

2
1c        4.14 

For the velocity of the shear wave c2  a curl x is performed on equation 4.10 giving 
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The rotation vector w is now introduced which is related to the displacement vector u by 

u
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where 
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Substituting equation 4.16 into equation 4.15 and recognising the identities 0ux ,

u-uu xx
2  and that 0w  gives 

2

2
2 w
w

t
      4.18 

which describes the propagation of the rotation w by a velocity c2 given as 

2c        4.19 
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Equation 4.18 can also be interpreted as describing equivoluminal waves that propagate at the 

velocity c2 since the dilatation is zero, and in the same light equation 4.13 describe irrotational 

waves. 

Before leaving bulk waves, we should consider the propagation of plane waves, which are 

going to come up later. A plane wave is the case when the particle motion on a plane in space 

is described by constant phase and amplitude. It can be shown [Graff 1975 for example] that 

longitudinal and transverse polarised plane waves propagate with velocities equal to the 

equivalent bulk velocities given in this section.  

4.3.2 Classical wave propagation in an infinitely long solid bar  

The problem of elastic wave propagation in a bar was first investigated by Pochammer [1876] 

and independently by Chree [1889]. Their solution to problem is simplified by assuming the 

bar to be infinitely long such that end effects can be neglected. The equations of motion for an 

isotropic bar are known to have solutions corresponding to three different types of modes 

[Love (1927)], being longitudinal, flexural and torsional. For the equations of motion, the 

approach of Kolsky [1963] and Redwood [1960] will be followed. To enable insertion of the 

boundary conditions, equation 4.10 is first transformed to cylindrical polar co-ordinates r, , z 

as shown in Fig 4.3, with corresponding displacements ur, u , uz. The equations of motion for 

cylindrical co-ordinates become: 
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where the dilatation  in cylindrical co-ordinates is given by 
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and the following rotations wr, w , wz are components about three orthogonal directions, being 

along the radius vector r, perpendicular to the rz plane and parallel to the z-axis respectively.  

They are related to the displacement gradients by: 
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where the three equations 4.23 to 4.25 lead to the relation  
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If we consider the bar to be surrounded by a vacuum then there is no medium outside of the 

bar to support a stress field. Hence there are no tractions on the surface of the bar, and the 

stress components rr, r , and rz at r=a should vanish. These are the only boundary 

conditions that classically are considered. The bar is considered to be infinitely long since end 

effects are neglected, however in practice the length of the bar should be large in proportion to 

its radius [Kolsky (1963)]. The relationship between the radial stresses to the strains in 

cylindrical coordinates are: 
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We can consider the propagation along the bar in the z direction as an infinite train of 

sinusoidal waves, where the displacements can be given as 

tizinUu rr expexpcos     4.31 

tizinVu r expexpsin     4.32 

tizinWu rz expexpcos     4.33 
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where  is the wave number in the z direction and  is the frequency. 

It can be shown [Kolsky (1963)] that the equations of motion equation 4.20 through to 4.22 

lead to Bessel equations requiring that the functions U, V and W must be of the form given by 
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where the radial wave numbers are given as 
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22
2

2 / c       4.38 

Including the boundary conditions by setting equations 4.28 through to 4.30 to zero for r=a

and substituting the stresses into equations 4.31 through to 4.33 results in three simultaneous 

equations. The unknowns A, B and C are eliminated to give rise to the Pochammer-Chree 

frequency equation, which can be written in the form 

0, nnf        4.39 

where for a given integer value of n (0, 1, 2 etc) the roots of the frequency equation relate axial 

wave number  to frequency . It is common to display the characteristics of guided waves in 

projections of wave number, phase or group velocity as a function of frequency. When the 

phase velocity vph of a harmonic wave is a function of its frequency or wavelength, then the 

propagating medium is termed dispersive [Havelock (1914)]. The phase velocity vph describes 

the rate at which a constant phase portion of a continuous harmonic wave  moves, which for a 

given frequency  is defined by 

phv        4.40 
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Since continuous excitation is rarely used in NDT, a more meaningful parameter is group 

velocity vgr that describes the rate at which energy or a packet of waves travel and is given by 

the derivative 

grv        4.41 

4.3.3 Dispersion curves and mode shapes for the reference bar 

This section discusses the dispersion curves for the reference bar, where the bar is assumed to 

be infinite in length and transient effects are not considered. The dispersion curves and mode 

shapes were obtained using Disperse [Pavlakovic et al. (1997)] , a program developed at 

Imperial College NDT laboratory for the solution of wave propagation in plate and cylindrical 

systems. Briefly, the solution technique begins by holding the wave number constant, the 

corresponding roots of the frequency equation are then evaluated to provide initial loci on the 

dispersion curves. From these loci, dispersion curves are then drawn within a frequency range 

of interest using a process of root finding and extrapolation. Greater details of the solution 

technique and examples of it use can be found in the theses of Lowe [1992] and [Pavlakovic 

[1998]. The curves will be examined in phase velocity and group velocity projections as a 

function of frequency. The different modes will be labelled by a system adopted by Silk and 

Bainton [1962] where a mode is tracked by its type, here being either longitudinal L or flexural 

F modes. The first index refers to the circumferential order, which describes the number of 

wavelengths around the bar circumference and this relates to the integer value of n in the 

frequency equation. The second index is a counter variable that relates to the order of the root 

of the frequency equation. Since it is unlikely that the PUNDIT transducers with their piston 

like excitation could excite torsional waves, they will not be referred to. The excitability of 

other modes can be assessed by observing the mode shapes, which describe how the radial and 

axial displacements vary as a function of the bar radius r.

For the reference bar the phase and group velocity projections are shown in Fig. 4.4 and Fig. 

4.5 respectively. The dispersion curves shown are in fact universal for all diameters since the x

axis represents frequency times radius. The bulk velocities have been included on both Fig 4.4 

and Fig. 4.5 for reference only; classically they are not considered to propagate along the bar. 

A brief description of the related displacements for the fundamental modes shown follows. 

Disperse can not solve for velocities at zero frequency but at approximately zero frequency, 

the axial displacements for the first longitudinal mode L(0,1) are shown as uz0 in Fig. 4.6. The 

graph is plotted for an arbitrary displacement as a function of distance from the centre axis. 
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The axial displacements are constant for near zero frequency, the propagating wave can be 

described as plane, being purely extensional and propagating at the bar velocity c0 equal to 

/E . The corresponding radial displacements for the L(0,1) mode near zero frequency, 

shown as ur0 in Fig. 4.7, are zero. The axial and radial displacements for the points on the 

L(0,1) curve coincident with the centre frequencies of the 54kHz and 83kHz PUNDIT 

transducers are also shown in Fig. 4.6 and  Fig. 4.7 respectively. Comparing the mode shapes 

for the different frequencies reveals that as the frequency increases the radial component of 

motion grows and the axial displacement along the bar axis decreases. At much higher 

frequencies the mode behaves as a Rayleigh wave where displacements are confined to the 

outer surface.  

For the first flexural mode F(1,1) the axial and radial displacements at the three frequencies, 

zero Hz, 54kHz and 83kHz are shown in Fig. 4.8 and Fig. 4.9 respectively. Near zero 

frequency F(1,1) behaves as pure bending, while with increasing frequency the axial 

components increase. Again for the F(1,1) mode, at much higher frequencies the displacements 

are confined to the surface. It should be noted that the L(0,1) mode displacements are 

symmetric about the axis whereas the F(1,1) displacements are non-axi symmetric.  

The main characteristic of interest is that above zero frequency all guided modes have 

complicated functions of radial and axial displacements. As a first approximation, the 

PUNDIT transducers can be assumed to vibrate in the axial direction only so that modes with 

predominately axial displacements will be more strongly excited. Higher order modes that can 

also exist within the frequency range of interest are also shown in Fig. 4.4 and Fig. 4.5. It can 

be seen that the phase velocities for the higher modes exceed the bar velocity c0. As described 

previously, however, the phase velocity does not correspond to the transmission of energy, 

which is propagated at the group velocity. Fig 4.5 reveals that apart from the low frequency 

range of the L(0,1) all modes of interest propagate at less than the bar velocity c0. This 

suggests that the calibrated value on the reference bar is not intended to relate to a guided 

mode. 

4.3.4 Wave propagation in a finite length solid bar 

Treating a bar as a bounded medium of infinite length showed that no modes propagate above 

the bar velocity c0. Kolsky [1963] informs that several writers [Southwell 1941 p355 for 

example] have pointed out that in theory we could treat the bar in the same manner as an 

infinite medium where elastic waves propagate at the bulk velocities c1 and c2. Indeed Disperse 

[Lowe (1992)] uses the superposition of partial waves that propagate at the longitudinal c1 and 
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shear c2 wave velocities for the solution of the modal wave equations. A point disturbance that 

arises somewhere within a bar will excite dilatation and transverse waves, which spread out 

spherically from the source. At a certain point down the length of the bar, the arriving waves 

could be said to have travelled by a variety of routes, the earliest arrival corresponding to a 

wave propagating with the bulk longitudinal velocity down the most direct path, the axis, that 

has not interacted with the boundaries. Redwood [1960] states that from this approach clearly 

some part of the signal will arrive with a velocity c1 in any finite bar. The parts of the wave 

that interact with the surface will give rise to reflected dilatation and transverse waves. These 

in turn will give rise to both types of wave as they are also reflected to give rise to guided 

waves. The amplitude of the unreflected wave will decrease inversely with the distance 

travelled. It follows that the greater part of the energy of the disturbance will travel with a 

velocity less than that for dilatation waves. In the limit, this agrees with the Pochammer-Chree 

analysis that assumes an infinite length of bar where the energy of the unreflected wave will 

have fallen to zero. It seems intuitive from this that if a point force is applied to the centre of a 

bar whose length is comparable to the radius, some energy will reach the other face at the 

dilatation velocity. For the PUNDIT transducers, excitation is in the form of a piston source, 

which could be said to apply a plane wave to the ends of the bar. Whether plane waves would 

propagate in the manner suggested for the point force is uncertain. For plane waves Bancroft 

[1941] suggests that where lateral motion is freely allowed the operative elastic constant will 

be E, whereas if it is inhibited the constant will be 2 . Thus at low frequencies where 

plane waves can propagate, a dilatation wave will travel in the first case at the bar velocity, 

while in the second case at the longitudinal bulk velocity. The author is unaware of any general 

solution for wave propagation in a length of finite bar and so it will be assumed that this 

problem has yet to be substantially covered theoretically. Such a task is not the purpose of this 

investigation and so a finite element and experimental study will be performed to see if 

Bancroft’s suggestions for plane waves can be verified. 

4.4 Wave velocity extraction 

It was noted earlier that in a dispersive system the wave phase velocity is a function of 

frequency. For a finite duration signal that comprises a range of frequency components the 

effect leads to distortion of the wave packet as it propagates. Common techniques such as 

comparing the time domain signal envelopes of the propagated signal with the input are not 

appropriate when assessing signal transit times in such a system. This section briefly describes 

the phase spectrum, instantaneous frequency and F ridge point wave velocity extraction 

techniques that will be applied to the finite element and experimental results. So as to not 
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distract too much from the aim of this chapter the techniques are covered in much greater 

depth in Appendix 1. The instantaneous frequency and the F ridge point technique have been 

developed by the author to complement the established phase spectrum method. 

4.4.1 Phase Spectrum – Fourier Transform 

The phase spectrum approach described by Sachse and Pao [1978] evaluates the phase velocity 

of a wave from the difference in the phase spectra of two signals that occur at different points 

along the passage of the wave. The technique for obtaining the phase velocity begins by first 

computing the FFT (Fast Fourier Transform) of the two time domain signals u(t) and v(t). The 

phase spectra ( ) of each FFT is then found which will be a discontinuous function with 

values that vary from 0 to 2  (depending on the arc tan argument) which must be transformed 

into a continuous function. For a known path length z, at a given frequency , the difference in 

the phase is used to evaluate the phase velocity, which is given by 

uv

ph

z
v        4.42 

Group velocity can be then be evaluated from equation 4.42 by differentiating frequency with 

respect to wavenumber.  

In Appendix 1, the effectiveness of the phase spectrum technique is shown to be greatly 

reduced when the signal to noise ratio falls below 2:1, when more than one mode is present in 

a signal and where discontinuities exist in the time domain. 

4.4.2 Instantaneous frequency - Hilbert transform 

The technique briefly described here compares the time delay at which a value of 

instantaneous frequency occurs in two related signals to give the group velocity for a wave 

propagating at that frequency. A signal is said to be analytic [Ville (1948)] if its Fourier 

transform for negative frequencies is zero. An analytic signal ua(t) can be synthesised from a 

real time signal u(t) by modifying the Fourier transform [Randall (1987)] where 

0aU   when  < 0, 

UUa   when  = 0, 

UUa 2  when  > 0, 
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The inverse Fourier transform of Ua( ) will be complex where the real and imaginary parts are 

related by the Hilbert transform. The analytic signal can be written in terms of modulus and 

phase as 

ti
aa etutu        4.43 

The rate of change of phase gives the instantaneous frequency i given by 

0ti         4.44 

If the signal was a sinusoidal wave at a frequency then the instantaneous frequency I would 

coincide with that frequency. When the signal comprises a number of sinusoidal waves of the 

same amplitude then the instantaneous frequency is the average of those frequencies. Thus the 

instantaneous frequency given by the analytic signal can be said to provide the average 

frequency that occurs in a signal at a given point in time. 

Appendix 1 describes in greater detail a technique developed by the author that employs the 

instantaneous frequencies to extract group velocity, which is most suitable when applied to 

chirp type signals. To evaluate group velocity the first step is to compute the instantaneous 

frequencies fi{u(t)} and fi{v(t)} for an input signal u(t) and output signal v(t) respectively. At a 

frequency fi on the fi{u(t)} curve the time delay dtf to a similar point on fi{v(t)} is then found. 

For a given path length z, the group velocity vgr(f) as a function of frequency f is then obtained 

by 

fdtzfvgr /        4.45 

In Appendix 1, the effectiveness of the instantaneous frequency technique is shown to be 

reduced when the signal to noise ratio is low, where a signal consists of more than one mode 

and when discontinuities exist in the time domain. Additionally other than for chirp type 

signals determining the time delay becomes difficult unless the instantaneous frequencies for 

both signals are continually rising or falling.  
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4.4.3 F ridge points - Wavelet transform  

The F ridge point technique briefly described here has been developed by the author. Group 

velocity is evaluated employing the emerging wavelet transform (WT) to locate the time when 

the maximum energy in a given frequency band occurs. Compared to the previous techniques 

mentioned, the study in Appendix 1 shows the F ridge point method to be much less sensitive 

to low signal to noise ratios and it also allows the investigation of complicated time signals 

that comprise multiple modes. The concept of the WT was formalised in a series of papers by 

Morlet et al [1982]. Since the introduction a seemingly exponential yearly increase in papers 

on the subject have been published on all manner of diverse uses. The original motive for the 

development of the WT [Goupillard et al (1984)] was to be able to transform a time signal and 

display the transform in such a manner that the contributions of different frequency bands 

could be analysed separately from each other. The representation is commonly known as time 

frequency analysis, where a one dimensional time signal is mapped into two dimensions of 

time and frequency. Wavelet functions (t) have a tapering or window operation applied to 

sinusoids so that they are located in time. Location in frequency is provided by the oscillatory 

nature of (t). However, frequency time analysis is not ideal since the uncertainty principle 

[Mallet (1989)] states that arbitrarily high precision in both time and frequency cannot be 

achieved.

From a given analysing wavelet  function a whole family of translated b and scaled a (related 

to frequency ) versions are created by 
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The continuous wavelet transform (CWT) Wv(a,b) of a function v(t) is then given by the 

integral transform 
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Equation 4.47 describes the inner product of v(t) with  a,b(t) or in other words the CWT 

evaluates the similarity between the wavelet and the signal, where the similarity is the 

frequency content. Thus the CWT coefficients refer to the closeness of the signal to the 

wavelet at the current scale. When a complex set of wavelets, such as a Morlet wavelet [Morlet 

et al (1982)] is applied to a signal the coefficients will themselves be complex. For a given 

scale a the modulus of the CWT gives the energy envelope of the signal as a function of 
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translation b. When the modulus of the complex coefficients are displayed in two dimensions 

of frequency time this display is known as a scalogram.  

In the scalogram it is useful to observe the points in time-frequency where the maximum 

coefficients occur. When these peaks form a function of time or frequency they are known as 

ridge points [Mallet (1998)]. Abbate et al [1999] suggest that since the ridge points for this 

application are related to high concentrations of acoustic energy they are natural candidates for 

the characterisation of ultrasonic signals. Two straightforward processes can be employed to 

obtain ridge point functions. Firstly, if we stand on the time axis and look into the frequency 

domain the peaks in the CWT Wv(b,fi)  will correspond to the instantaneous centre frequency fi

as a function of time b, which we shall call B ridge points. The instantaneous frequency given 

by the CWT identifies the centre frequency that occurs in a signal at a given point in time. This 

is a big improvement over the analytic signal technique where the average frequency was 

obtained. However, Appendix 1 shows that the technique is limited to higher scales 

(frequencies) where time location improves. 

For non dispersive signals, the standard technique to measure time delays between two tone 

bursts is to compare the times at which the maximums in their signal envelopes occur. 

Similarly it is suggested by the author that the time delay between the maxima in the energy 

envelopes for two different signals can be compared. The time delay enables the evaluation of 

the group velocity of a given frequency band. To accomplish this we stand on the frequency 

axis at a given frequency and look into the scalogram, then the F ridge point will correspond to 

the time at which the scalogram is a maximum. For the F ridge point technique to be of use, 

any superimposed following modes or reflections should be of lower energy than the out going 

mode of interest. When this is the case if we stand on the frequency axis and look into the 

scalogram, the mountainous regions related to the CWT coefficients of the wave packet of 

interest will obscure the less significant following modes or reflections. Other than this straight 

forward case, Abbate et al [1999] and Veroy et al [1999] suggest that algorithms would be 

required to compare time delays between similar modes for the case when modes overlap in 

the time domain. 

4.5 Finite element study 

Numerical modelling was conducted using the finite element software FINEL [Hitchings 

(1997)] that has been developed in the Aeronautical Department of Imperial College. FINEL 

decomposes a problem into a finite number of small elements that when linked to together 
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form a mesh. The propagation of a disturbance through the mesh is solved by an explicit time 

marching scheme using basic equations of motion. By contrast the solution of the modal 

problem, by programs such as Disperse mentioned in the previous section, solve potential 

functions that exist for all time which influence the displacement field everywhere. As such 

FINEL has the ability to model the transient behaviour in a discrete geometry that Disperse 

cannot.  

4.5.1 Finite element model description 

The type of elements used for this work were four noded quadrilaterals for which 

displacements and stresses vary linearly between the corners. This type of element is often 

used for modelling plane stress, plane strain or axi symmetric solids. Taking advantage of the 

symmetry about the x axis, a uniform 2 dimensional oblong mesh that represented a cross 

section through the radius and along the axis of the bar was used. Fig. 4.10 shows a schematic 

of the finite element mesh approximation for the PUNDIT calibration bar. The oblong mesh 

was a 1280mm long, 25mm radius axi symmetric approximation using 512 by 10 square 

elements respectively. The bar length was chosen so that over the duration of the solution 

computation the fastest wave would not be reflected at the far end of the bar and interfere with 

the monitored out going wave.  

FINEL uses an explicit time marching approach, which unlike implicit methods does not 

involve inversion of the large stiffness matrices that are commonly encountered. However the 

major disadvantage is that the explicit method is only conditionally stable. The parameters for 

stability are set out by [Alleyne (1991)]. For this work, the size of the elements was 

sufficiently small for there to be eight or more nodes per wavelength, where the wavelength 

was related to the Rayleigh wave. When such a criterion is met  [Alleyne (1991)] states that the 

velocity error will be less than 0.5%. For stability the constraint is that no wave should be able 

to traverse more than one element within a given time step. For this work the time step was 

chosen to be typically 80% of the time taken for longitudinal bulk wave to propagate over the 

length of an element. 

At one end of the mesh each node was excited by applying the same time varying 

displacement in the axial direction only. Modes with predominately axial displacements were 

therefore more strongly excited. For propagation of plane waves Bancroft [1941] suggests that 

where lateral motion is freely allowed the operative elastic constant will be E, whereas if it is 

inhibited the constant will be 2 . To examine this, two solutions were computed, with 

different boundary conditions at the excitation end of the mesh. For case 1 lateral motion in the 
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y direction was freely allowed, while for case 2 lateral motion was inhibited. For the latter 

case, it would be expected that since elsewhere in the bar lateral motion is allowed, the phase 

velocity of the wave would be a function of the distance propagated. Free boundary conditions 

were used on the outside diameter of the bar. Consideration of flexural waves was not 

applicable due to the model being axi symmetric. Hanning windowed frequency modulated 

signals were used to enable the employment of the signal processing techniques that have been 

discussed in Appendix 1. The displacements at a number of the nodes along the central axis in 

the form of time traces in the in-plane direction only were stored for later signal processing. 

The frequency characteristics of the excitation were chosen so as to control the amount of 

energy available in the region of mode cut-off frequencies. To illustrate the effect of a cut-off 

mode, Fig. 4.11 shows the input chirp signals u20(t) and u40(t) that were applied to each node 

on the bar face, separated vertically for clarity, that have 20kHz and 40kHz centre frequencies 

respectively. Shown along with these are the monitored outputs at 100mm down the bar v20(t)

and v40(t). The modulus of the frequency spectrum of u20(t) as shown in Fig. 4.12 has very little 

energy in the region of the L(0,2) cut off frequency which occurs at about 74kHz. By contrast 

there is relatively significant energy in the u40(t) input around the region of the cut-off 

frequency. The effect shown in Fig. 4.11 is that there is noticeable ringing in the time domain 

and in Fig. 4.12 a spike in the frequency domain is evident. Additionally shown in Fig. 4.12 is 

that if the cut-off frequency is significantly excited the finite element model predicts an 

increase in output energy which is not reasonable. Therefore choice of excitation 

characteristics requires some prior knowledge of mode phase velocities.  

4.5.2 Finite element model results 

Finite element results will be processed to obtain wave velocities by the three signal 

processing techniques described in Appendix 1. All three methods suffer from some 

limitations, there being no universal panacea to the problem. However, some combination of 

all three techniques should provide a full analysis. The excitation used for the first 

investigation was the 20kHz signal u20(t) as shown in Fig. 4.11. The bandwidth of this signal 

avoids significant excitation of the L(0,2) cut-off frequency, which was necessary to allow 

signal processing by the phase spectrum method. For case 1, lateral displacements along the 

bar were freely allowed. The phase velocities for  the wave at the monitored points were 

evaluated using the phase spectrum method (see section A1.3), where u(t) was the monitored 

signal at x=0mm and v(t) the monitored signals shown in Fig. 4.13 at the points 0, 10, 20, 30, 

40 and 50mm from the end of the bar. Fig 4.14 shows the evaluated phase velocities as 

continuous functions with the dispersion curve predicted by Disperse for L(0,1) shown as 

squares. The results show that up until almost one bar diameter from the end of the bar, the 
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phase velocity differs from the L(0,1) dispersion curve, with this difference being a function of 

frequency. After about one bar diameter away from the bar end the phase velocities of the 

monitored signals matched the dispersion curve. At low frequencies there is some indication of 

phase velocities above the bar velocity. This may be the case, or it could be an artefact that 

results from the effect of finite element approximations [Pavlakovic (1998)].  Additionally, the 

phase spectrum is sensitive to the chopping of seemingly innocuous long wavelength 

components out of the signal. When the model was repeated where only the node on the axis 

received excitation, very similar phase velocities were obtained. Thus where lateral 

displacements are freely allowed, the finite element model found no significant indication of 

the phenomena suggested by Redwood [1960] that for short enough path lengths some 

component of the guided wave travels at above the bar velocity. 

The modelling was repeated for case 2 where lateral displacements on the bar end were 

inhibited. Avoiding monitoring under one bar diameter away from the bar end, the axial 

displacements in the x direction were monitoring at points 50, 100, 150 and 200mm from the 

end of bar as shown in Fig. 4.15. The evaluated phase velocities are shown as continuous 

functions in Fig 4.16 with the dispersion curve for L(0,1) shown as squares. It can be seen that 

compared to the dispersion curve, the phase velocity is a function of the distance from the bar 

end, but the difference is not a function of frequency. At short path lengths the wave 

propagates at near the bulk velocity such that the operative elastic constant will be 2 . As 

the wave propagates further down the bar the phase velocity approaches the dispersion curve 

such that the operative elastic constant tends to E which agrees with Bancroft [1941].  Any 

deviation from a smooth curve again can be attributed to chopping the monitored signal. The 

finite element results suggest that for wave propagation in a bar, a wave of significant energy 

will only propagate above the bar velocity if some inhibition of lateral displacements is 

considered. 

A comparison of the different signal processing techniques described in Appendix 1 used to 

evaluate the group velocity of a non trivial signal can be made by processing the model outputs 

when using an input signal u40(t) as in Fig. 4.11. For the model where lateral displacements are 

freely allowed it can be expected that the monitored signal will contain the L(0,1), L(0,2) and 

possibly the L(0,3) mode. For this case, the input signal u(t) and monitored signal v(t) at a 

distance from the end of x=150mm are shown in Fig. 4.17. For the monitored signal v(t) there 

is evidence of ringing which is associated with the significant excitation of the L(0,2) cut off 

frequency. To enable signal processing by the phase spectrum method (see section A1.3) Fig. 

4.17 also shows filtered versions of u(t) and v(t). These signals have been Gausian filtered in 

both time and frequency domain so that oscillations decay smoothly to zero within the duration 

of the window and the effect of exciting the cut-off frequency is removed. The filtered signals 



 98

will be used only for assessing group velocity by the phase spectrum method, where such 

filtering is necessary for meaningful results. Fig. 4.18 shows the useful range of the 

instantaneous frequency of signals u(t) and v(t) as obtained by the Hilbert transform technique 

(see section A1.4). At greater frequencies the ringing in the output due to excitation of the cut-

off frequency greatly complicates the instantaneous frequency function so as to invalidate its 

use for the evaluation of group velocity. Fig. 4.19 shows the F ridge points (see section A1.5) 

of signals u(t) and v(t) as obtained by the wavelet transform, using a family of constant Q 

wavelets within the frequency range of fmax=120kHz and fmin=8kHz where the unscaled centre 

frequency was 0=2.8 rad/s. The centre frequency was chosen by trial and error, where 

typically a change in value of 10% has only a marginal effect. Fig. 4.20 shows the F ridge 

points (see section A1.5) of signals u(t) and v(t) as obtained by the wavelet transform, using a 

family of constant bandwidth wavelets which is analogous to the Short time Fourier transform 

(STFT) technique. For the STFT the frequency range varied between fmax=125kHz and 

fmin=10kHz and the use of an unscaled centre frequency of 0=2.2 rad/s was found to be 

appropriate. The results of evaluating the group velocity by the four techniques is shown in 

Fig. 4.21 along with the dispersion curves shown as dashed lines. For the filtered signals, 

extraction of the group velocity via the phase spectrum method proves to be the ideal, where 

excellent agreement with the L(0,1) dispersion curve can be seen. The range of frequency in 

this case is limited to up to 60kHz since the signal had to be low pass filtered otherwise results 

would have been meaningless. The Hilbert transform technique (see section A1.4) is the only 

method that identifies that some energy propagates above the bulk velocity and shows good 

agreement with the L(0,1) mode up to about 40kHz. However due the analytic signal being 

only loosely applicable at low frequencies, results in this region are unreliable. Similarly both 

the wavelet transform techniques (see section A1.5) cannot resolve velocity at the lowest 

frequencies due to the poor time location. The STFT method with its family of constant 

bandwidth wavelets picks up on the L(0,2) and L(0,3) modes, whereas the constant Q wavelets 

focus only on the L(0,1) mode. The reason is that these relatively narrow band STFT functions 

correlate better to the higher modes than the broader band constant Q wavelets. This highlights 

the necessity of choosing appropriate wavelet functions to analyse a given signal. For the 

PUNDIT reference bar simulation, none of the signal processing techniques have reliably 

identified energy propagating above the bar velocity in the finite element model.  

By agreeing with dispersion curves the results from all three techniques suggest that the 

majority of the energy in the reference bar propagates as guided waves. All three signal 

processing methods used to extract wave velocities perform some degree of integration over a 

time window. They all perform some time/phase as a function of frequency analysis, and the 

uncertainty principle states that you can not have arbitrarily high precision in both. Thus if 

some energy does reach the monitoring point having propagated at the bulk velocity it must be 
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of relatively small energy and is therefore lost in the integration. The only way to identify 

whether some energy does propagate would be to observe the magnitude of the monitored 

signal in the time domain. No knowledge of the frequency content of the signal would be 

gained, only its location in time. This was achieved using the first quarter cycle of 40kHz 

centre frequency signals that are shown in Fig. 4.17. Up to the first quarter cycle the 

instantaneous frequency rises linearly for the input from 0 to about 22kHz which is shown in 

Fig. 4.18. For a point of given amplitude on the input u(t) signal the time delay to a point of the 

same amplitude on the signal v(t) that has propagated 150mm was obtained. Fig 4.22 shows 

the time delay between signals u(t) and v(t) as a function of signal amplitude. A zoom into the 

low amplitude results is shown in Fig 4.23. The time delays that correspond to the propagation 

of waves at the bulk and bar velocity are shown on both figures for comparison. A low energy 

component of the wave is identified to be propagating near to the bulk velocity. Beyond this 

arrival the time delay tends towards that for the bar velocity. This would tend to agree with the 

Hilbert transform results and suggests that the signal can only be identified in the low 

frequency region where its energy relative to other modes must be significant. 

In conclusion, the finite element model has identified that energy will propagate above the bar 

velocity when lateral displacements are inhibited. When lateral displacements were freely 

allowed, at a distance greater than one diameter from the bar end the majority of the wave 

energy was observed to propagate as guided waves such that wave propagation could be 

considered classical. For simulation of wave propagation in the reference bar, the Hilbert 

transform technique (see section A1.4) developed by the author does indicate that a low 

frequency component propagates with sufficient energy to be recognised. However, an artefact 

of the technique in this region makes results unreliable. Some low level energy propagating 

above the bar velocity has been identified by observing the magnitude of the received signal in 

the time domain. An experimental study follows to confirm this. 

4.6 Experimental study 

For the time value on the PUNDIT calibration bar to be valid would require a wave to 

propagate within the bar at something near the bulk longitudinal velocity. The final section of 

this study is to apply the PUNDIT transducers to the bar and evaluate the signal transit time 

experimentally.   

An experimental simulation of the threshold crossing method used by the PUNDIT was 

conducted. For the experimental signals, initially the 54kHz centre frequency narrow band 

PUNDIT transducers were coupled face to face by a thin film of grease. One transducer was 
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excited by the PUNDIT apparatus and from the other transducer the received signal averaged 

500 times was taken to be the input signal u(t). The transducers were then coupled to the 

calibration bar, excited by the PUNDIT apparatus, and an averaged signal v(t) for propagation 

in the bar was obtained. The load presented to the transducers differs for the signals u(t) and

v(t). Signal v(t) can only then be considered to be a crude approximation of u(t) that is delayed 

in time due to propagation down the length of the bar. A 54kHz disturbance propagating in 

aluminium at something like the bar velocity would have a corresponding wavelength of about 

100mm, such that the signal wavelength will be of the same order as the length of the 153mm 

bar. Since the signal is narrow band the received signal after the first few cycles will consist of 

a superposition of the out going wave and reflections off the other end of the bar. Therefore 

only the first few cycles of the signals u(t) and v(t) are of interest which are shown in Fig 4.24. 

A horizontal line has been drawn to correspond to an arbitrary threshold. The time delay 

between when the input u(t) crosses the threshold to when it is crossed by the signal v(t) was 

obtained for values of threshold from the PUNDIT threshold value of 250 V to 3.5V which 

corresponds to the maximum amplitude of the first half cycle of the received signal. The time 

delay as a function of received signal amplitude is shown in Fig. 4.25 for which Fig. 4.26 

shows a zoom of the low energy region. The horizontal lines drawn relate to propagation at the 

bulk and bar velocity. The time delay for a low energy component compares to the value of  

25.8µs stamped on the reference bar which correspond to propagation of bulk waves. As the 

magnitude of the threshold increases so the time delay rises rapidly. This effect was described 

in chapter 3 when addressing the variation of signal transit times as a function of path length.  

In practice the magnitude of the received signal will depend on the acoustic coupling of the 

transducers to the reference bar. The amplitude of the transmitted pulse depends on the 

pressure exerted on the transducer, and the characteristics and thickness of the couplant 

medium [Canella (1974)]. Thus, if care is not taken when performing the calibration 

procedure, the amplitude of the received bulk wave could be reduced to below the magnitude 

of the PUNDIT threshold such that the apparatus does not recognise its arrival. A slower 

guided wave component of sufficient amplitude would then trigger the threshold resulting in 

an unreliable calibration of the apparatus. 

A component propagating in the bar of sufficient energy has been recognised by threshold 

crossing but no information has been obtained on its frequency content. Only the phase 

spectrum technique (see section A1.3) has shown any reliability of evaluating phase or group 

velocities in the low frequency range of interest. The technique requires the signal to be 

compactly supported within the duration of the window and to have no interfering reflections. 

Unfortunately this is not possible for narrow band wave propagation where the wavelength is 

comparable to the length of the bar and the interference by the following reflected signal 

confuses the analysis.  
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To investigate further, the experiment was repeated, this time obtaining unaveraged signals of 

twice the duration as before. Without any filtering the signals were processed with the wavelet 

technique and after some low pass filtering it was possible to process using the Hilbert 

transform method (see section A1.4). The continuous wavelet transform (CWT) was applied to 

these signals so as to obtain the F ridge points (see section A1.5) which allows evaluation of 

the group velocity as a function of frequency of a signal. The instantaneous frequency of the 

filtered signals u(t) and v(t) obtained by the Hilbert transform technique are shown in Fig 4.27 

where only the early portion of the functions can be used to evaluate group velocity since after 

that interference by the reflection off the bar end confuses the analysis. The F ridge points (see 

section A1.5) for the CWT method (within the frequency range of fmax=80kHz and fmin=20kHz 

where the unscaled centre frequency was set to 0=2.8 rad/s) for the raw signals u(t) and v(t)

are shown in Fig 4.28. The evaluated group velocities for both the wavelet and Hilbert 

transform techniques are shown in Fig. 4.29. It can be seen that the analysis by either 

technique results in the plotting of a dispersion curve. For the Hilbert transform analysis the 

dispersion curve becomes unreliable beyond about 30kHz due to the interference of the 

reflection off the bar end in the signals. For frequency components below about 10kHz the 

technique indicates that the disturbance in the bar is propagating above the bar velocity which 

tends to the bulk velocity at the lowest frequencies. However, the Hilbert transform is 

unreliable in this frequency region so identification of such wave velocities cannot be 

presumed. The F ridge point CWT wavelet technique is not affected by the inclusion in the 

signal of the reflections since they are of lower energy than the out going signal. Within the 

20kHz to 75kHz frequency range the CWT indicates that the majority of the energy of the 

disturbance is propagating as the L(0,1) mode. The wavelet transform cannot effectively 

evaluate the velocity of components below the 20kHz frequency since the uncertainty principle 

in this region leads to poor time location. However, the combination of the results from both 

techniques covers the frequency range of interest and suggests that over the length of the bar 

most of the energy of a disturbance propagates as a guided mode. The marginally lower 

velocities compared to the L(0,1) mode can be attributed to neglecting the extent of the slower 

velocity in the brass end caps when modelling using Disperse.  

4.7  Conclusion 

The PUNDIT apparatus calibration technique relies on setting the equipment to display a given 

time value when two transducers are coupled to the reference bar. The given time value was 

shown to relate to a wave that would have to propagate at a speed near to the bulk velocity. 
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This is contrary to classical assumptions where the bar would be considered to be a wave guide 

such that the fastest wave propagates at the bar velocity. However, it was noted that some 

researchers suggest that if a component of the wave propagates along the direct route (without 

interacting with the boundaries) then some energy will arrive that has propagated at the bulk 

velocity in any finite length of bar. Whether this component can be identified will depend on 

its energy relative to those that propagate as guided modes. An investigation was conducted 

which involved researching: the classical approximations for wave propagation in infinite bars, 

finite element modelling and experiments for wave propagation in finite bars, and an extensive 

evaluation of appropriate signal processing techniques which is presented in Appendix 1. 

Wave propagation in a finite length of bar was modelled by a finite element axi symmetric 

approximation. Analysis of model results using the phase spectrum technique found that only 

if lateral deflections were inhibited would a component of the wave be identified to propagate 

above the bar velocity. When lateral displacements were freely allowed, at a distance greater 

than one diameter from the bar end, the wavelet and Hilbert transform signal processing 

techniques identified that the majority of the wave energy propagates as guided waves such 

that wave propagation could be considered to be classical. Controversially, when applying the 

time domain threshold crossing technique a component was identified to propagate at a 

velocity between the bulk and bar velocity. This technique provides ideal time location but no 

information is available regarding the frequency content of the component. Similarly, since the 

other signal processing techniques perform an integration to identify some frequency content, 

they loose information on time location. This stems from Heisenberg’s uncertainty principle 

which states that simultaneous measurement of position and momentum is not possible. 

Likewise you cannot have arbitrary high precision when two operators do not commute such 

as frequency and time. It is for this reason that the problem is intractable. 

Experimental studies were conducted to examine wave propagation in the actual calibration 

bar for a disturbance excited and received by the PUNDIT 54kHz narrow band transducers. 

Processing of results was complicated by superposition of reflections on the out going signal. 

Application of the F ridge point wavelet transform signal processing techniques to the 

experimental data found that most of the signal energy propagates as guided waves along the 

length of the bar. The F ridge point technique developed by the author was found to be 

particularly suitable for investigating experimental guided wave propagation in a finite length 

of bar since it ignores the presence of reflections in the monitored signal. Similar to the finite 

element analysis, simulation of the time domain threshold crossing technique identified a low 

energy component that propagates at the bulk velocity in the PUNDIT reference bar.  
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One application of the PUNDIT apparatus is to enable a comparative study of the velocity of 

sound in concrete. As such absolute values are not important, though the apparatus should still 

be calibrated with the reference bar so as to relate the velocity measurements of one test to 

another. It is recommended that if accurate measurement of the absolute value of velocity of 

sound in concrete is important, then care should be taken when coupling the transducers to the 

reference bar so as to maximise signal transmission to and from the bar. If not, the component 

travelling at the bulk velocity which is of relatively insignificant energy may be unlikely to 

trigger the threshold ahead of the slower much higher energy guided waves. This could result 

in incorrect calibration of the PUNDIT apparatus. Thus the calibration procedure used by the 

PUNDIT apparatus has been found to be dependent on effective coupling of the transducers to 

the reference bar. 
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Figure 4.5. Group velocity projection for 25mm radius aluminium bar. 



 106

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25
radius mm

am
pl

it
ud

e
uz  f 0kHz

uz  f=54kHz

uz  f=83kHz

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

radius mm

am
pl

it
ud

e

ur  f 0kHz

ur  f=54kHz

ur  f=83kHz

Figure 4.6. Axial displacements uz for 
fundamental longitudinal mode L(0,1).

Figure 4.7. Radial displacements ur for 
fundamental longitudinal mode L(0,1). 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

radius mm

am
pl

it
ud

e

uz  f=83kHz

uz  f=54kHz

uz  f 0kHz

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

radius mm

am
pl

it
ud

e

ur  f 0kHz

ur  f =83kHz

ur  f =54kHz

Figure 4.8. Axial displacements uz for 
fundamental flexural mode F(1,1). 

Figure 4.9. Radial displacements ur for 
fundamental flexural mode F(1,1). 



 107

Y

X

Y

X

Case 2.  Lateral displacements
               on bar end inhibited

Case 1.  Lateral displacements
               on bar end allowed

All nodes on bar end
receive identical excitation

to simulate
launch of a plane wave

Monitoring points
for displacements in x direction

Figure 4.10.  Schematic of oblong finite element mesh used to approximate wave propagation in 
Pundit calibration bar. 

100 200 300

Monitored signalv20(t )

100mm from bar end
20kHz centre frequency

Input signalu2 0(t )

20kHz centre frequency

Input signalu4 0(t )

40kHz centre frequency

Monitored signalv40(t )

100mm from bar end
40kHz centre frequency

us

 A
m

pl
it

ud
e 

  (
1 

un
it

 /
 d

iv
is

io
n)

1 
un

it

0

50

100

150

200

250

0 0.04 0.08 0.12

Frequency MHz

F{ u 20(t ) }

F{ v 20(t ) }

L[0,2] 
Cut-off freqeuncy 

F { u 4 0(t ) }

F { v 4 0(t ) }

Figure 4.11. Example finite element model 
input and monitored signals. All separated 
vertically for clarity. 

Figure 4.12. Frequency spectra of example 
finite element model input and monitored 
signals. 



 108

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Monitored signal v (t )
at x  =10mm  

20kHz centre frequency 
Input signal u (t )

at x=0mm

us

v (t) at x =20mm

v (t) at x =30mm

v (t) at x =40mm

v (t) at x =50mm

Figure 4.13.  Input u(t) and monitored signals v(t) at centre of bar for finite element model of 
50mm diameter aluminium bar where lateral displacements are freely allowed everywhere. All 
separated vertically for clarity. 

2

2.5

3

3.5

4

4.5

5

5.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Frequency  MHz

x = 10mm 

x  = 20mm 

x  = 30mm 
x = 40mm

squares - Dispersion curve

Figure 4.14. Phase velocity of monitored signals v(t)  relative to  Input u(t) (continuous 
functions) as shown in Fig. 4.13 shown along with dispersion curve for L(0,1) (squares). 



 109

0

2

4

6

8

10

12

0 50 100 150 200 250 300 us

20kHz centre frequency 
Input signal u (t )

at x =0mm

Monitored signal v (t )
at x  =50mm  

v (t) at x =100mm

v (t) at x =150mm

v (t) at x =200mm

Figure 4.15. Input u(t) and monitored signals v(t) at centre of bar for finite element model of 
50mm diameter aluminium bar where lateral displacements are inhibited on bar end. All 
separated vertically for clarity. 

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Frequency  MHz

x = 50mm 

x = 100mm
x = 150mm
x = 200mm

squares dispersion curve 

Figure 4.16. Phase velocity of monitored signals v(t) relative to input u(t) (continuous functions) 
as shown in Fig. 4.15 shown along with dispersion curve for L(0,1) (squares). 



 110

0.1 0.2 0.3 0.4 ms

Filtered 40kHz centre frequency
Input signal u(t)

Recieved signal v(t)
 at x=150mm

40kHz centre frequency
Input signal u(t)

Filtered Recieved signal v(t)
 at x=150mm

(a)

(b)

(c)

(d)

 A
m

pl
it

ud
e 

  (
1 

un
it

 /
 d

iv
is

io
n)

1 
un

it

0

10

20

30

40

50

60

70

0 100 200 300 400 s

Instantaneous frequency
of input signalu(t )

Instantaneous frequency
of received signalv(t)

Figure 4.17.  Finite element model input u(t)
and monitored signal v(t)  for the comparison 
of group velocity evaluation techniques. All 
separated vertically for clarity. 
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Figure 4.22.  Time delay between finite 
element model input u(t) and output v(t) signal 
at 150mm from bar end as a function of signal 
amplitude. Dashed lines corresponding time 
delays for the bulk and bar velocity. 

Figure 4.23.  Zoom in of the time delay 
between for finite element model input u(t)
and output v(t) signal as a function of 
threshold value. 
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Figure 4.28.  F ridge points for experimental 
unfiltered input u(t) and output v(t) signal 
evaluated by STFT transform where 0=1.9.
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Chapter 5 

Convenient coupling of transducers 

5.1 Introduction 

The most valuable use of the ultrasonic technique is to provide a relative assessment of 

concrete quality [Naik and Malhotra (1991)] and [Bungey and Millard (1996)] where an area 

is marked out on the structure and the velocity of sound is determined at the numerous grid 

points. The results are often plotted as a contour map where variations in pulse velocity aid 

the indication of problem areas. The application of standard ultrasonic transducers for such 

an inspection proves to be time consuming and messy due to the requirement that a viscous 

couplant be applied to each grid point. The purpose of the couplant is to fill the significant 

air gaps between the transducer face and rough test surface, which due to the impedance of 

liquids being higher than air, allows a much higher proportion of the wave energy to cross 

the interface. Higher viscosity couplants are generally recommended for rougher surfaces. 

The removal of such couplants after completion of tests is inconvenient. It is reported that it 

is difficult to achieve consistent coupling of ultrasonic transducer when testing concrete 

[Bungey (1991)]. Chapter 3 showed that the measured pulse velocity is affected by the 

magnitude of the received signal amplitude. The amplitude of the transmitted pulse depends 

on the pressure exerted on the transducer, the characteristics and thickness of the couplant 

medium, and the roughness of the surface under test [Canella (1974)]. There is thus an 

incentive to find alternative means of coupling transducers to a rough surface. In this work 

attention was focused on investigating solid coupling as an alternative to liquid coupling. 

5.2 Possible coupling alternatives 

For testing concrete surfaces a practical alternative to using a viscous couplant is to have 

some form of solid coupling. One idea reported is to use a fast setting mortar [Andrews and 

Hughes (1991)] between the face plate of the transducer and the concrete surface under test. 

The mortar sets in approximately 2 minutes developing sufficient strength to support a 

transducer. The effect is that more consistent coupling is achieved and signal transmission is 

improved due to the impedance of the mortar being a better match to concrete than a viscous 

coupling. However, the technique is certainly less convenient than using a viscous couplant 

when conducting a large number of tests on a grid. A more viable form of coupling  that has 

been around for some years might be to couple with a compliant solid such as a rubber that 

conforms around the surface contours of the test surface as described by Dickson [1982]. 
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Two common designs of rubber coupled devices are static and wheel probes. The static 

probe described by Billson and Hutchins [1993] has a rubber tip attached to the face of the 

transducer, which provides the coupling mechanism when the transducer is pressed against 

the test surface. For the wheel probe [Drinkwater and Cawley (1995)], the rubber is formed 

into a tyre, the tyre filled with a liquid, and the transducer is mounted on the wheel axis. For 

this design, modest coupling pressures allow satisfactory transmission of ultrasound, and 

enable rapid scanning of relatively smooth metal test surfaces. For concrete, rapid scanning 

of typically awkward profiles is not considered to be practical and so the design of a hand 

held rubber coupled transducer was envisaged to take one of three possible forms that are 

shown in Fig 5.1:  

a)   a flat pad bonded to the transducer face;  

b) a profiled pad such as a hemisphere;   

c) a liquid volume encapsulated by a thin flexible shell, to be termed a membrane (similar 

to the wheel probe concept but more flexible).  

An alternative to rubber coupling is to have an indenter whose modulus is comparable to or 

higher than concrete. For a hard indenter efficient coupling would be achieved by increasing 

the pressure over the solid-solid interface. For the loads that could be applied by a hand held 

transducer such pressures necessitate that the contact area be relatively small. A possible 

device might be similar to the machined PZT conical transducers which have been 

developed at NBS [Proctor (1982)] for point source point receiver techniques. The point-like 

contact between a conical indenter similar to that shown in Fig 5.2a and the test surface is a 

means by which acoustic energy can be coupled efficiently. These transducers have been 

used by Evans [1997] for acoustic emission monitoring and by Hsu and Eitzen [1987] and 

Wu and Fang [1997] for determination of concrete slab Rayleigh wave velocities. However, 

for testing non conductive materials, the design would require a conducting foil between the 

conical tip and surface to complete the electrical earth. This would be impractical for 

numerous tests on the rough surfaces common to concrete structures. An alternative is to 

have a solid metal tip attached to the transducer face. Exponentially shaped transducers as 

show in Fig 5.2b are already commercially available (CNS Farnell, London) for testing 

difficult concrete profiles. These are not ideal devices since the low contact area made with 

the rough surface results in weak signal transmission. As such it is recommended [PUNDIT 

Operating Manual] and [Naik and Malhotra (1991)] that these transducers be used as 

receivers along with a standard transducer as a transmitter. 
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The feasibility of hard conical transducers was not investigated since their use is well 

documented. However, little additional effort would be required to allow contact models to 

predict the contact of conical indenters. Rubber coupled devices were researched since their 

use when testing concrete appears to be an original approach. The research involved a 

number of stages which will be described in this chapter in the chronological order in which 

they were tackled. For background the characteristics of concrete roughness and ultrasonic 

transmission through a dry rubber concrete interface were first investigated. With these 

findings in mind contact models were then derived to enable design optimisation of a hand 

held device. Prototype devices were made and tested. Model predictions and experimental 

results were compared to address the feasibility of dry rubber coupling transducers to 

concrete. Finally the option of smearing the rubber with water to improve coupling was 

investigated.

5.3 Characteristics of rubber concrete contact 

Prior to the modelling and evaluation of various solid coupling designs an investigation was 

conducted into the characteristics of concrete surface roughness and transmission through a 

rubber-rough surface interface. The investigation would allow familiarisation with rough 

surface data and enable the choice of the parameters that the contact model will solve. 

5.3.1  Concrete surface roughness characteristics 

There are a large range of surface finish possibilities for a concrete structure that could be 

considered when addressing the feasibility of solid coupling of transducers. When 

conventionally coupling ultrasonic transducers the viscosity of the couplant recommended 

increases with surface roughness. Where the surface roughness is significant it is 

recommended [PUNDIT Operating manual] that some kind of surface preparation such as 

filling the surface with a quick setting mortar be performed. Adequately flat surfaces not 

requiring preparation will generally be those that had been in contact with metal or wooden 

shuttering during hydration or where an exposed surface was carefully floated flat prior to 

hydration. It would be expected that the use of a solid coupled device would apply only to 

surfaces not requiring preparation. Thus the characteristics of very rough surfaces or visually 

pleasing designs will not be considered.  
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When modelling contact of rough surfaces, the topography is often approximated by 

distributions of idealised asperities for which contact behaviour is well known [Greenwood 

and Williamson (1966)]. The major disadvantage of this technique is that the deformed 

shape of the surfaces, particularly where there is no contact can not be predicted. An 

alternative is to use the measured topography directly in a numerical contact model [Webster 

and Sayles (1986)] where the data could also be approximated by sine wave or statistically 

generated functions. The profile of a rough surface u(r) can be obtained by drawing a stylus 

over the surface and recording the vertical displacements at suitable intervals. Application of 

statistical methods reduces the data to height and wavelength parameters to describe the 

spatial structure of the surface [Whitehouse and Archard (1970)]. For the height 

considerations, the centre line average (CLA) or (Ra) has been used [Drinkwater (1995)], and 

is defined as the mean vertical departure of the profile from the centre line , where the 

average roughness is given by 
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L
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where the requirement for the centre line is  

0
0

dru
L

r          5.2 

A statistically more meaningful measure of average roughness is the root mean square or 

standard deviation  of the height from the centre line [Johnson (1985)] given by 

dru
L

L

r

0

22 1
        5.3 

The relationship between  and Ra depends on the nature of the surface. For a sine wave 

profile

aR22/         5.4 

and for a Gaussian random profile  

aR
2/12/          5.5 
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Additionally for a sine wave the amplitude A is related to the Ra by 

2/aRA           5.6 

Substituting equation 5.6 into equation 5.5 provides the relationship between the statistical 

random data and the amplitude of an equivalent sine wave as 

2/1/2A         5.7 

These relationships enable the height distributions of a real rough surface to be modelled by 

a sine wave or Gaussian random distribution. It has been found [Johnson (1985)] that many 

real surfaces exhibit a height distribution that is close to the Gaussian probability function 

given as 

2

2
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where (u) denotes the probability that the height of a particular ordinate lies between u and 

u +du. The probability that the height of an ordinate is greater than u is given by the 

cumulative probability function which is given as  

uduu

u

        5.9 

When plotted on normal probability paper, data that follows a Gaussian distribution will fall 

on a straight line whose gradient gives a measure of the standard deviation. To develop 

statistical data for the numerical contact model of  i=1 to N data points, the author found that 

the following algorithm manipulates a set of random numbers so as to force a Gaussian 

distribution given by 
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For each data point i a set of random numbers are generated, where it was found by 

experiments that a good distribution was possible when the number of random numbers n
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used was n>3N.  The magnitude of a generated random number Ra can vary between 1>

Ra>0. Depending on the magnitude of a random number Ra the corresponding value of xa is 

given as xa=1 when Ra <0.5 and xa=0 when Ra >0.5. Having generated n random numbers, 

the corresponding values of x are integrated to give the amplitude of the function yi. This 

processes is repeated for all data points and when completed some form of sampling or 

fitting of cubic splines can be applied to the function y so as to smooth it out. 

For wavelength or spatial parameters the correlation length  *  is often used [Sayles (1982)] 

which is defined as the wavelength when the autocorrelation function has decayed to some 

fraction of its peak, where the value 1/e has been used [Drinkwater (1995)].  The 

autocorrelation function R( ) over the range ± N/2 is given as 

drruru
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The surface slope m parameter that forms part of the plasticity index which indicates 

whether deformation is predominately elastic or plastic [Johnson (1985)] gives some 

indication of the smoothness or roughness of a surface, which is given as  

*
m         5.12 

5.3.2  Real rough concrete surfaces 

Surface texture was measured using a Talysurf surface profilometer using a ball end stylus. 

The equipment draws a stylus over a sample length of the surface, and digitises the vertical 

displacements at suitable intervals. The slope of the sample surface is removed from the data 

by finding a straight line (or arc for circular components) from which the mean square 

deviation is a minimum. The apparatus stores the trace from which the height  and 

wavelength  * parameters that describe the surface are calculated. The sample interval for 

this work was 50µm and for 501 samples gave a sample length of 25mm. Data is affected by 

variables such as sampling interval, sample length, stylus size and instrument response for 

example. The extent to which these variables affect such data is not considered in this work. 

Sampling intervals and stylus were chosen by reference to texts [West et al. (1987)] and 

[Whitehouse and Archard (1969)]. 
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Surface Standard deviation  (µm) wavelength * (mm) Rms. slope m

Metal shuttering 14.1 0.17 0.083 

Timber shuttering 98.7 2.75 0.036 

Floated 33.1 2.1 0.016 

Table 5.1  Surface roughness parameters of sample concrete surfaces. 

Three differing surfaces were considered for this work that could be said to represent the 

range of concrete surfaces for which no preparation is required prior to ultrasonic testing. 

Sample blocks were obtained where the surfaces had been in contact with metal or wooden 

shuttering during hydration or had a floated finish. The profilometer traces of these surfaces 

are shown in Figs. 5.3a through to 5.3c. The statistical parameters that refer to these surfaces 

are shown in Table 5.1. The surface that had been in contact with metal shuttering during 

hydration had the lowest values of  and  * and largest value for the surface slope m. This 

relatively flat surface had an appearance similar to a medium grade sandpaper. By contrast 

the surface that had been in contact with timber shuttering during hydration appeared much 

coarser with greater values of  and  *. This surface would be considered borderline as to 

whether any surface preparation should be required prior to conventional ultrasonic testing. 

The floated surface had a relatively small value for  and a large wavelength  *, giving the 

lowest surface slope m resulting in the surface feeling smooth to touch. This surface could 

not be said to be typical for a floated finish, but it was taken to represent perhaps the 

smoothest concrete surface that might be encountered. The data from these three sample 

concrete surfaces will be used throughout this chapter for modelling. Experiments will be 

conducted on the actual surfaces in the vicinity of where the measurements were performed. 

5.3.3  Ultrasonic transmission across an interface 

The efficiency of ultrasonic coupling can be measured by the proportion of the signal that is 

transmitted or reflected at the interface. For conventional liquid coupling of transducers the 

transmission coefficient is related to the acoustic impedances of the couplant and the 

structure the signal radiates into. Additionally it can be shown [Canella (1974)] that the 

signal transmission is a strong function of couplant thickness unless the thickness is small. 

For grease couplant applied to concrete this effect can be neglected if the couplant thickness 

is less than about 0.5mm. The classical analysis considers the interaction of a normally 

incident plane wave with a plain boundary between two infinite media [Pialucha (1992)]. 
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For convenience the normal incidence transmission coefficient is derived here following a 

similar approach to Kendal and Tabor [1971].  

Consider the cylindrical bar shown in Fig 5.4a of cross sectional area Ao where materials of 

acoustic impedance Z1 and Z2 are connected perfectly at the interface x=0.  The boundary 

conditions at the interface are that the pressures should be balanced and that the 

displacements be continuous giving 

tri PPP        5.13 

and

tri yyy        5.14 

The normal pressures of the incident, reflected and transmitted waves as a function of time t

and distance propagated x can be given respectively as 
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where the wave number k is the ratio of frequency  over velocity c given as 

n
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the bar velocity c which is related to Young’s modulus E and the material density  by 

n

n
n

E
c        5.17 

from which the acoustic impedance is given as 

nnn cZ        5.18 

For a linear system Hooke’s law relates the pressures to the displacement by 

y
x
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which in terms of the displacement is written as 

Pdx
E

y
1

       5.20 

Substituting equation 5.20 into the displacement boundary condition given in equation 5.14 

and applying the pressures given in equation 5.15 gives 
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which upon integration gives 
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At the interface, by setting x=0, allows the factorisation of the exponential terms such that 

equation 5.22 reduces to 
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Substituting equation 5.13 and equation 5.18 into equation 5.23 gives 

2
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Z

Z
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The normal transmission coefficient Tp for the perfect interface is the ratio of transmitted 

over incident pressure, which from equation 5.24 gives the classical solution as 

21

22

ZZ

Z
TP        5.25 

Now consider an imperfect interface at x=0 as shown in Fig. 5.4b where the rough faces of 

two cylindrical bars of cross sectional area Ao are loaded against each other. The 

transmission across the interface is not only dependent on the acoustic impedances of the 
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two materials but also on the degree of contact. From friction studies, the true area of contact 

At can be considered as the sum of the points where the atoms on one face are within atomic 

distances of the atoms of another. For dry coupled interfaces the areas not in contact are 

described as air gaps. For transmission across steel interfaces Kendal and Tabor [1971] have 

shown that where the surfaces are separated by more than 10nm the transmission of a 

200kHz signal across the air gap is insignificant. It is for this reason that some form of liquid 

couplant, with much higher impedance to air, is often used to fill the air gaps to allow a 

significantly greater proportion of the signal energy to transmit across the interface. The true 

area of contact will be a function of the material properties, applied load, the geometry of the 

surfaces and the way the individual asperities deform. To predict the transmission across an 

imperfect interface we will follow Tattersall [1972] and Baik and Thompson [1984]. The 

derivation begins by firstly considering the static case where the application of a stress 

results in the closure of the interface, the relative displacement of two points in the far field 

on opposite sides of the interface can be given as 

IP
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       5.26 

where P is the displacement for a perfect interface and I represents the deformation in the 

vicinity of the imperfect interface. It follows that we could approximate the interface by a 

spring of stiffness per unit area (N/m3) given by 

I

k          5.27 

which when used to join the faces of the two bars together will reproduce the static 

displacement. For the dynamic case, if the signal wavelength is large compared to the 

individual contact areas then the dynamic response is said to be related to the static response. 

This approach commonly known as the Quasi static model (QSM) where the spring stiffness 

for the QSM is again given by equation 5.27, and it may also have a mass term [Baik and 

Thompson (1984)] in order to include the inertial effects. The roughness of concrete surfaces 

is characterised by large wavelength relative to height parameters, such that the non 

contacting areas can be approximated as a planar array of cracks. Baik and Thompson 

[1984] have shown that for signal wavelengths which are large compared to such planar type 

defects the mass term is negligible. Additionally, for low frequencies Angel and Achenbach 

[1985] have shown that the QSM shows good agreement with other more rigorous models. 

The QSM implicitly assumes [Yalda-Mooshabab et al. (1992)] that contacts are close 
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enough to each other such that the depression due to one contact effects the state of 

neighbouring contacts. By  considering that the contacts interact with one another, then 

following Kendal and Tabor [1971] the contacts can be lumped together such that the 

interface can be approximated as a constriction between the two bars as shown in Fig 5.4c. 

Consequently, if Pt is the pressure of the wave transmitted from left to right this exerts a 

force PtA0 on the interface and a displacement in that direction of PtA0/S. The stiffness S in 

this case has the more familiar units of force per unit displacement (N/m) and is related to 

equation 5.27 by 
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The boundary conditions for the imperfect interface are again that there should be equal 

pressures at the interface 

tri PPP         5.29 

However, due to the deformation in the vicinity of the constriction the displacements are 

discontinuous at the interface such that the boundary condition is given as 

S
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The solution for the normal incidence transmission coefficient for the imperfect interface is 

solved by the same procedure as for the perfect interface. Substituting equation 5.20 into 

equation 5.30 and arriving at a similar position to equation 5.23 we get 
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Substituting the boundary condition equation 5.29 into equation 5.31 and rearranging as the 

ratio of transmitted pressure over incident gives 
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If the stiffness k is substituted for S/A0 this gives the standard representation attributed to 

Tattersall [1972], but the form of equation 5.32 is preferred since it will prove useful later. A 

spring stiffness of zero would approximate a slack interface for which the magnitude of 

equation 5.32  would be zero. A perfect interface would be approximated by an infinitely 

stiff spring which would result in a negligible imaginary term reducing equation 5.32 to 

equation 5.25. The efficiency of an interface can be given by the fractional transmission, 

which is the ratio of the transmission for an imperfect interface over that for a perfect one 

given by 
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Substituting equation 5.32 and equation 5.25 in equation 5.33 gives 
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For low values of transmission where 11
fTix  the modulus can be approximated by 
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Thus it follows that for low levels of contact the classical solutions predict that transmission 

across an imperfect interface will be proportional to the interfacial stiffness. It also follows 

from equation 5.35 that transmission is inversely proportional to frequency. 

5.3.4  Experimental rubber concrete contact 

This section describes an investigation conducted to examine the characteristics of ultrasonic 

transmission through a rubber-rough surface interface. The aim was to assess the degree of 

contact that would be made for loads that could be applied by hand, and to verify if the quasi 

static model QSM was appropriate for this type of contact. For the experiments transducers 

were rubber coupled to two different surfaces: a concrete block which had the floated 

concrete surface as shown in Fig 5.3c, and an aluminium block to which some medium 

grade sandpaper was bonded. The floated concrete surface represented perhaps the 

smoothest surface that might be encountered when testing concrete, and the sandpaper 
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bonded onto aluminium represented the metal shuttered concrete surface as in Fig 5a but 

without the inhomogeneity of concrete. A schematic of the experimental set up for tests on 

the concrete block is shown in Fig 5.5. Immersion type 40mm diameter 200kHz centre 

frequency transducers were used. The receiving transducer throughout all experiments was 

bonded to the underneath of the block. 

To examine the degree of contact that might be expected and how this might vary as a 

function of applied load, initially the transmitter was grease coupled to the upper surface of 

either specimen, using a medium viscosity water pump grease. The transmitter was excited 

with a 150kHz 5 cycle tone burst and a reference signal for grease coupling was obtained. 

The transmitter was removed, and the test surface was degreased with a solvent. A thin layer 

of grease was then smeared over the transmitter face and a degreased 40mm diameter 2mm 

thick silicon rubber disc was then applied. The transmitter was then dry rubber coupled to 

the rough test surface and weights of up to 3.5kg were added in increments of 0.5kg to the 

back face of the transducer so as to load the interface and thereby increase the degree of 

contact. The transmitter was excited as for grease coupling and a signal for dry rubber 

coupling at a given applied load was received. The maximum amplitude of the received 

signal for dry coupling was then divided by that for grease coupling. The ratio was taken to 

represent the fractional transmission as given by equation 5.33 as a function of applied load. 

Additionally an experiment was conducted to verify the frequency dependence predicted by 

the QSM.  The transmitter was initially grease coupled to the upper rough surface. For the 

concrete sample, the transmitter was then excited with a 5 cycle tone burst, at centre 

frequencies of 100, 200 and 300kz to obtain reference signals for grease coupling over the 

frequency range of interest. For coupling to sandpaper the transmitter was only excited with 

a 220kHz 5 cycle tone burst. Dry rubber coupling was then achieved as done previously 

using a 1mm or 2mm thick 40mm diameter silicon rubber disc, where for these tests the total 

applied loads were 1.2kg, 2.2kg and 3.2kg (a load of 2kg being considered as typical that 

could be applied with a hand held device). The transmitter was then excited as for grease 

coupling, and signals for dry rubber coupling were obtained. The frequency spectrum (over a 

reasonable band width) of the received signal for rubber coupling was then divided by that 

for grease coupling. The ratio was taken to be the fractional transmission given by equation 

5.33 as a function of frequency. To verify the prediction given by equation 5.32 that the 

transmission coefficient is inversely proportional to frequency, a single value of the 

interfacial stiffness was chosen such that the modulus of equation 5.32 could be compared to 

the experimental results. 
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5.3.5  Experimental results for rubber concrete contact 

Fig 5.6a and Fig 5.6b show the experimentally evaluated fractional transmission as a 

function of applied load results for rubber floated concrete and sandpaper coupling 

respectively. For a 2kg load that could be applied by hand the fractional transmission would 

be expected to be in the region of 0.15 to 0.015 (16dB to 36dB loss of signal strength) 

depending on surface roughness. It is apparent that over the range of loads considered the 

transmission is approximately a linear function of applied load for contact with both rough 

surfaces. The greatest signal transmission occurs not surprisingly for contact with the 

smooth floated concrete. The levels of transmission are within the range for which equation 

5.35 is applicable, thus for low load rubber concrete contact we can make approximations 

that:

a) T W, transmission is proportional to load (from Fig 5.6a and 5.6b) 

b) T S, transmission is proportional to interfacial stiffness (from equation 5.35) 

c) from which it follows that S W, interfacial stiffness is proportional to load. 

An investigation performed by Kendall & Tabor [1971] suggests the following relationships 

between interfacial stiffness and applied load that depend on the contact characteristics: 

i) For asperities that interact, if the number of contacts remain the same and the size of 

the asperities grow with increasing load then the stiffness will remain constant.  

ii) If the number of contacts increases with load and the separation between contacts 

remains constant the stiffness will be proportional to W1/3 and the overall 

deformation will be elastic.  

iii) For isolated non-interacting contacts, if with increasing load the number of contacts 

remains the same but the size of the contacts increases the stiffness will be 

proportional to W1/2 and the overall deformation will be plastic.  

iv) If on the other hand an increase in load leads to an increase in the number of 

contacts but not their average size, then the stiffness is proportional to W.

The experimental results for rubber concrete contact would appear to fall into the last 

description. Greenwood and Williamson [1966] and Archard [1957] have shown that for 

contact of nominally flat surfaces where the deformation of each asperity is independent of 

its neighbours then the real contact area is proportional to the applied load. Thus for low 

load flat rubber-concrete contact we can add another two approximations in that: 

d) At W, real area of contact is proportional to load and 

e) T At, transmission is proportional to real area of contact (from approximations a to d) 
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The term non interacting contacts refers to where individual contacts are more than 3 to 4 

diameters apart [Kendall & Tabor (1971)], or when the true area of contact is less than about 

one tenth of the apparent area of contact. For T At this would limit the fractional 

transmission to 0.1. Generally this will be the case for concrete type surfaces, the floated 

surface being thought of as the smoothest surface that might be encountered. However 

Haines [1980] has shown that for ratios of true over apparent area of contact of 

approximately 0.2, the effect of asperity interaction is small, thus allowing the 

approximation T At even for contact with the floated surface.  

The experimental results for the transmission as a function of frequency are shown in Fig 

5.7a and Fig 5.7b for contact with the floated and sandpaper surfaces respectively. For both 

sets of results an appropriate value of interfacial stiffness was chosen so as to compare the 

QSM characteristics of transmission being inversely proportional to frequency. It can be 

seen that these results do not exhibit the dependence on frequency that the QSM predicts. 

There is evidence in both sets of results of some periodicy but the mean transmission 

remains fairly constant over the range of interest. Many researchers have found that contact 

problems display similar frequency dependence which the QSM predicts, for example, 

[Wooldridge (1979)] contact of steel blocks, [Margetan et al. (1990)] contact of metal-metal 

bonds, [Tattersall  (1972)] adhesion testing and more recently [Drinkwater et al. (1998)] 

aluminium-aluminium contact. All these results relate to problems with appreciably higher 

loads and smoother surfaces and hence greater contact areas than apply to our case. 

Drinkwater [1995] found that when rubber coupling to roughened aluminium surfaces, 

frequency dependence was only occasionally identified and then not to the extend the QSM 

predicts. In that work the degrees of contact satisfied the limits of the QSM. Yalda-

Mooshabab et al. [1992] note that for the QSM to be applicable the asperities are considered 

to interact. Boström and Wickham [1991] have shown that when the ratio of true over 

apparent area of contact equals 0.1, this results in the model predicting an appreciable build 

up of energy at the interface which invalidates the model. It is thus apparent that the QSM is 

not applicable for low load rubber concrete contact on the grounds of the low areas of 

contact  experienced and that contact areas do not interact. The author speculates that non 

interaction of contact zones contributes to the lack of the predicted frequency dependence. A 

thorough investigation into the reasons of lack of frequency dependence would distract from 

the aim of this chapter which was to investigate convenient coupling, thus it was decided to 

accept the contact characteristics obtained from the experimental results.  
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Having established that for low levels of contact T At, transmission is proportional to real 

area of contact, without frequency dependence it follows from equation 5.35 that the 

fractional transmission is equal to the fractional area of contact given by 

0A

A
T t

f         5.36 

Thus to predict the efficiency of a given solid coupled device, models will be derived to 

solve for contact area as a function of applied load to enable the transmission as a function 

of applied load to be predicted.  

5.4  Solid contact model 

The design optimisation of a device to enable convenient coupling of transducers when 

inspecting concrete structures requires some form of contact modelling to predict the signal 

transmission for a given applied load. The simplest models approximate surface roughness 

by distributions of idealised asperities for which contact behaviour is well known 

[Greenwood and Williamson (1966)]. The major disadvantage of this technique is that the 

deformed shape of the surfaces away from the contact zones can not be predicted. This is 

particularly troublesome when predictions of interfacial stiffness are required. An alternative 

to this successfully adopted by Drinkwater [1995] was to model the deformations of a solid 

rubber coupled device pressed onto a rough surface by using a numerical elastic line contact 

model [Webster and Sayles (1986)]. The digitised rough surface data was obtained from real 

surfaces using a surface profilometer. The interfacial stiffness was determined from 

predictions of the change in the separation between contacting surfaces as a function of load, 

which was then applied to quasi static contact models [Baik and Thompson (1984)] to 

estimate reflection or transmission coefficients. For low load rubber-concrete contact it was 

shown in section 5.3 that the fractional transmission is a function of the fractional area of 

contact and that determination of interfacial stiffness was not necessary. However, the 

numerical modelling of real surfaces is preferred for this work since it is uncertain how one 

might model the contact characteristics with some distribution of idealised asperities. This 

work considers various axi-symmetric solid contact designs that would attach to the face of a 

cylindrical transducer. When modelling the contact of such devices with a rough surface, 

initial trials using three dimensional numerical solutions [West and Sayles (1987)] were 

found to take considerable computational time. Line contact is more suitable for modelling 
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contact of parallel rollers and assumes that the surface roughness is parallel. It was therefore 

decided to derive more appropriate models where the solid bodies and hence the surface 

roughness are assumed axi-symmetric in profile. A number of different solution techniques 

for solving numerical contact problems are given by Johnson [1985]. The author chose to 

derive an alternative iterative solution technique which though crude proves effective and 

simple to program. Solid contact models will be validated by comparing their solutions for 

contact with smooth flat surfaces with those of classical analytical solutions. 

5.4.1 Contact model for a compliant solid pressed onto a rigid surface 

The following assumptions will apply to all contact models described in this chapter. Strains 

are assumed small enough for linear elasticity to apply. Surface slopes are assumed small so 

that forces act normally to the surface. It is assumed that there is no tendency for one body to 

slide with respect to the other and hence only forces normal to the surface are considered. As 

with classical solutions, the concrete surface will always be considered as an infinite half 

space.  

For rubber-concrete contact, since concrete is appreciably stiffer than rubber, the solution 

can be approximated by a deformable smooth surface brought into contact with a rigid rough 

surface. When modelling the contact of solid bodies we want to know what the surface 

deformations may be for a given load distribution. The simplest case relates a point force P

acting on a semi-infinite elastic body as in Fig. 5.8. The solution for the gradient w r/  a 

distance z from the surface and a radius r from the origin O, is given by Timoshenko and 

Goodier [1982] as 

])(3)()1(2[
2

)1(
2

5
2222

3
22 zrrzzrrv

E

vP

r

w
   5.37 

where E is Young’s Modulus for the compliant material and v is Poisson’s ratio. The normal 

displacement w is obtained from equation 5.37 by integration 
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where C is a constant of integration. For a semi-infinite body w=0 when z= , which gives

C=0.  Thus from equation 5.38 the solution for the normal surface displacement (z=0) on a 

semi-infinite body, a distance r from a point force is classically [Boussinesq (1885)] given as  

Er

vP
w r

)1( 2

         5.39 

Axi-symmetric load distributions can now be modelled by the superposition of equation 

5.39. The surface deformations due to the application of a ring load of radius b and intensity 

q per unit length as in Fig. 5.9 can be approximated by the superposition of equi-spaced 

point forces as in Fig. 5.10 of equal magnitude P given as 

qbdP         5.40 

The point force P can be considered  to be applied over an elemental area da, such that its 

effect is equivalent to an applied pressure p given by 
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A general point B(r,0) is a distance s from a point force located at A in Fig. 5.11. The length 

s is a function of r and , that is derived geometrically. One solution is 

22
, sincos rrbs r      5.42 

which is relevant for a point both inside and outside the boundaries of the ring load. 

Substituting equation 5.40 for P and equation 5.42 for r into equation 5.39, and summing the 

point forces gives the solution for the normal surface displacement w, at a distance r from 

the origin, due to the action of a single ring load of radius b, as 
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The solution for an axially symmetric load distribution q(b) is obtained by integrating 

equation 5.43 over the contact area, which in a form suitable for a numerical solution gives 
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When discretised into N and M elements this gives 

M
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and
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where a is the maximum distance from the origin considered and a/N=dr. As r b, equation 

5.44 is unduly sensitive to the ratio a/N due to the singularity at r=b. For convenience a 

factor was found by experimentation to make the solution robust for a range of dr:

N/  for m=0 and M, and =1 elsewhere. This introduces some approximation in the 

vicinity of this point but has little effect overall and so does not compromise the analysis. 

Finally equation 5.44 can be given in a simplified form as 
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where the matrix I(r,b) is known as the influence coefficients that describe the displacement at 

r due to a unit intensity ring load of radius b.

5.4.2 Contact model for indenter and surface of similar modulus 

The hard indenter contact can be modelled by simple modification of the compliant contact 

model. Where the modulus of the indenter E1 is comparable to the surface E2, it is required 

that the ratio of  (1-v2)/ E in equation 5.44 is replaced by 1/E*  [Johnson (1985)] where 
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The solution of equation 5.44 now gives the combined deformations of the two materials. 

The deformation in either material is obtained through the strain relationship 
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5.4.3 Contact model for a soft disc of finite thickness backed by a rigid substrate 

pressed onto a rigid surface. 

When modelling the contact for soft discs of finite thickness that are attached to the face of a 

transducer, we can approximate this by a soft material backed by a rigid substrate. For a 

finite thickness h of material, a general correction factor k is derived from the constant of 

integration given in equation 5.38. For a point force acting on the face of the disc, the 

displacement w a distance h from the disc surface is zero. Setting w=0 at z=h and solving 

equation 5.38 for the constant of integration gives 
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Assuming the first term has much less effect than the second term and rearranging gives 
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Thus substituting equation 5.51into equation 5.39, for a body of finite thickness h the normal 

surface displacement is given by  
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where      
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The only similar case found in the literature [Goryacheva (1998)] was that for a strip punch 

in contact with an elastic layer of thickness h that lies without friction on a rigid foundation. 

The solution for the surface displacements is given as 
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where the kernel is said to take the form 
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where    
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An equivalent solution to equation 5.54 that uses the authors’ function can be obtained by 

applying equation 5.53 to the classical line load solution given by Johnson [1985] such that 
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The authors’ function that corrects for a finite thickness of material can then be validated by 

comparing equation 5.54 with equation 5.57. The comparison between the surface 

displacements for a rigid backed punch given by equation 5.54 and equation 5.57 as a 

function of the non dimensional distance r/h from the application of a line load are shown in 

Fig. 5.12. It can be seen that both functions agree satisfactorily which validates equation 

5.53 for modelling of the deformations of a finite thickness strip punch. There is no reason to 

suspect that the same good agreement would not occur if an axi symmetric correction 

function had been found to compare with the authors’ function. Therefore the function k(r)

was included in the integral of equation 5.44 when modelling axi symmetric contact for a 

finite thickness material.
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5.4.4 Numerical solution of contact model. 

When modelling contact of rough surfaces, little is known about either the displacements w(r)

or the load distribution q(b and so the solution of equation 5.47 is normally indeterminate. 

Various numerical methods have been developed to solve such problems [Johnson (1985)]. 

An iterative procedure that uses a matrix inversion technique is described by Webster and 

Sayles [1986] for the numerical solution of line contact numerical models. The following 

describes a simple to program alternative procedure developed by the author which was 

adopted for the solution of all cases in this work. In this example it is used for solving the 

deformations of a soft hemisphere pressed onto a rigid wavy surface.  

The arbitrary profiles of the two bodies are shown in Fig. 5.13 where a function g(r) describes 

the wavy surface and v(r) describes the profile of the hemisphere such that it initially sits on 

top of the wavy surface. The hemisphere is then given a rigid body displacement  (which 

enables the solution; it has no physical meaning) such that the overlap is described by a 

function w  where

rrr vgw        rr vg     5.58 

and

0rw                   rr vg      5.59 

For the example the overlap function w (r) is shown in Fig. 5.14. An initial load distribution 

of q(b) is then assumed as a seed (a uniformly low value seems best) and a first estimate of 

the deformations w(r) is obtained by equation 5.47. The function q(b) is then adjusted for the 

next iteration n+1 by 
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where w (b) acts like an attracter and division by w(n,b)=0 is avoided. The result of equation 

5.60 is then substituted back into equation 5.47 for the next estimate of w(r)  as shown in Fig. 

5.14. Iterations are repeated until the solution converges to a desired level. The effect of 

iterating by equation 5.60 is that the magnitude of q(b) approaches zero for non contacting 

points and is positive for contacting points. For the hemisphere example, after a number of 
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iterations the solution converged to a load distribution q(b) that is shown in Fig. 5.15 along 

with a displacement function w(r) shown in Fig. 5.16.  

The displacements w(r) and the rigid body displacement rv , both shown in Fig. 5.16 are 

added together to provide the deformed final profile of the hemisphere u(r) as shown in Fig. 

5.17 given by 

rrr wvu         5.61 

From Fig. 5.15 the total load F is obtained from  

a

b bqF
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From Fig. 5.17. the true area of contact At is obtained by the summation 

rdrAt 2  for  rr gu      5.63 

5.4.5 Convergence of numerical solution. 

The convergence of the solution for the  hemisphere-wavy surface contact example was 

investigated. Normalised by the values after 10000 iterations, the predicted load given by 

equation 5.62 and the predicted true contact area given by equation 5.63 as iterations 

increase are shown in Fig. 5.18. and Fig. 5.19. respectively. The load converges rapidly, 

whereas the contact area converges more slowly. This is because after any number of 

iterations there is still some overlap of the surfaces of the two bodies, which makes the 

contact area appear larger for insufficient iterations. Thus convergence should be assessed 

by observing the contact area as a function of number of iterations. The following technique 

was found to aid the indication of adequate solution convergence. The idea is to obtain a 

prediction for the contact area using a different method and compare this to the estimation 

obtained by equation 5.63. When the two values agree the solution can be said to have 

converged. Deriving the technique begins by obtaining the overlap ratio c(r) of the rough 

surface profile g(r) over the final profile u(r) given as 
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For the example of the hemisphere pressed onto the wavy surface shown in Fig 5.17, the 

function c(r) is shown in Fig. 5.20, where a line has been drawn at 1rc . Ideally the 

function c(r) would vary from zero to unity, where for contacting points 1rc . However 

since after a number of iterations the hemisphere may still overlap the wavy surface, more 

realistically as in Fig. 5.20, the overlap function varies from near zero to just over unity. If 

the line is drawn at xc r  as in Fig. 5.21, then a function CA(x) that describes how the 

contact area varies with x can be plotted. Referring to Fig. 5.21, for a given value of x the 

contact area is established by:  

for xc r and its previous neighbour xc drr  then the contact area at r is given by 

rdrA r 2         5.65 

for xc r and it previous neighbour xc drr then by interpolating a point onto the line 

the elemental contact area at r-dr is given by 
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for xc r and its subsequent  neighbour xc drr then by interpolating a point onto the 

line the elemental contact area at r+dr is given by 
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for all other conditions A(r)=0.  The total contact area CA for a given x is 

a
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Around convergence the function CA(x) will be near zero for x>1 and then rise rapidly about 

x=1. Thus for insufficient iterations completed, the value at x where the greatest rate of 
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change occurs in the function CA(x) will coincide with the indicated contact area. This can be 

established by locating the maximum differential coefficient approximated by a central finite 

difference scheme given by 
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Fig 5.22 shows the function CA(x) and the differential of CA(x) for the hemisphere example 

after 1000 iterations. Vertical lines are drawn to indicate the apparent contact area for x=1

and that which coincides with the maximum differential. For the hemisphere contact 

example, Fig 5.23 shows a comparison between the apparent contact area given by equation 

5.63 and the indicated contact area given by equation 5.68 (where both are normalised by the 

contact area at 10000 iterations) as a function of the number of iterations completed. It can 

be seen that the two techniques of establishing the contact area converge on each other as the 

solution converges. This technique to indicate convergence is perhaps a little too 

complicated to be practical, however it was used to determine solution convergence 

throughout this work. 

The investigation into solution convergence found that although the iterative technique given 

by equation 5.60 is a rather crude forward difference type equation it adequately enables the 

solution of the contact model. Other kernels that have not been investigated might prove to 

be more effective, but in any case solution time using a PC is not prohibitive. 

5.4.6 Validation of solid contact model. 

To confirm the accuracy of the solid body models a series of case studies were performed in 

line with procedures given for validating a 2D line contact model [Webster & Sayles 

(1986)]. Results from the contact models for various profiles of indenters in contact with a 

flat semi infinite body were compared to classical contact solutions. 

The pressure distribution pr  for a smooth sphere of Young’s Modulus E in contact with a 

rigid flat infinite half space can be shown to be of the form [Johnson (1985)] 
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where a is the radius of contact, and the pressure at the origin po is related to the normal 

displacement  uz a distance r from the origin by 
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from which at the origin 
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For a conical indenter of angle  in contact with a smooth infinite half space the pressure 

distribution can be shown to be [Johnson (1985)] 
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where E* is the combined Modulus of the cone and surface as from equation 5.48. 

The pressure distribution for a flat disc of radius a which can be approximated by the 

solution for a punch is given by [Johnson (1985)] 
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where the normal displacement uz which is independent of r is given by  
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The following figures display the pressure distribution comparisons between the authors’ 

axi-symmetric models for a set 2000 iterations and classical contact; 
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For a flat rubber disc of radius 25mm pressed onto a flat rigid half space, Fig 5.24 shows the 

predicted pressure distributions which are normalised by po, the pressure at r=0 from the 

classical solution, for  

a) the solution by equation 5.44 (semi infinite body), 

b) the classical solution for a punch given by equation 5.74, 

c) for h/a=0.2 (finite disc thickness which is not treated by the classical solution) requiring 

the inclusion of equation 5.53 in equation 5.44  

The pressure distribution of the author’s model and the classical solution agree well for semi 

infinite bodies. When the disc thickness is finite (here 5mm), the effect of the function k is 

shown to increase the nominal pressure by a near constant factor. 

For a spherical rubber device in contact with a flat rigid surface, Fig 5.25 shows the 

predicted pressure distributions which are normalised by po, the Hertzian solution pressure at 

r=0, for 

a) the solution by equation 5.44, 

b) the Hertzian contact solution given by equation 5.70. 

The pressure distributions for both cases agree well. Additional iterations reduce the tapering 

off of the pressure distribution near the maximum contact radius. 

For a conical indenter pressed onto a stiffer flat half space whose modulus is fours times 

greater than that for the cone, Fig. 5.26 shows the predicted pressure distributions which are 

normalised by the classical solution pressure near r 0 (since at r=0, p= ), for 

a) the solution by equation 5.44 (modulus corrected for by equation 5.48),  

b) the classical solution given by equation 5.73. 

The pressure distributions for the authors and the classical solutions again show good 

agreement.

In conclusion, following a similar technique to Webster & Sayles [1986], validation has 

shown that the authors axi symmetric models agree with comparable classical solutions for 

contact with smooth flat surfaces. Application of the model for contact with real rough 

surfaces will be dealt with in section 5.6.2.
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5.5 Membrane contact model. 

A schematic of a prototype membrane coupled device designed by the author is shown in 

Fig. 5.27. During assembly, water is pumped into the fixture via a control valve until the 

membrane bulges out to the desired initial deflection. The membrane shoe fits onto the face 

of a standard transducer, to provide a hand held device that is pressed onto the concrete 

surface under test. The problem of solving the membrane rough surface contact mechanics is 

not so straight forward as for solid contact. Johnson [1985] reports that the complex 

structure of tyres do not lend themselves well to analytical treatment, relying instead on 

simple one dimensional models to describe the main features of behaviour. A search found 

some modelling of tyres and inflatables, most relying on finite element computations. 

Notwithstanding this, a simple axi symmetric model was pursued that could utilise the 

iterative solution technique described in chapter 5.4.4. The procedure adopted by the author 

was to first derive a simplified model to determine the contact radius of a membrane when 

pressed onto a flat surface. This simplified model will allow the evaluation of the effect of 

large displacements of a membrane and the effect of the encapsulated constant volume of 

liquid, which are both expected to be non linear. This model was a combination of the 

classical solution for small deflections of circular plates that was modified for large 

deflections and includes a derived function that corrects for the volume of liquid remaining 

constant. Having addressed the non linearities in isolation a numerical membrane contact 

model could then be derived for modelling contact with rough surfaces. The stages that 

combine to form the complete model were: 

1) Classical bending solution for a uniformly loaded circular plate with clamped edges with 

approximation for tension component 

2) Function to account for constant volume 

3) Membrane model - contact with a flat surface 

4) Determining tension approximation from experiments 

5) Membrane model - contact with a rough surface 

In order to derive a simple physically dependable model some detail had to be excluded. A 

form of calibration of the model was therefore required to account for this. Experimental 

results of load as a function of contact radius for contact by various membrane designs with 

a smooth flat surface were obtained. These results were compared to model predictions to 

determine simple functions required to calibrate the membrane models.  
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5.5.1 Large deflections of a uniformly loaded circular plate 

Consider first a circular plate of radius a shown in Fig 5.28, where deflections are small 

compared to the thickness of a plate the strain in the middle plain and therefore the tension 

component can be neglected. The slope of the deflected surface of the plate a distance r from 

the centre, due to a uniform pressure distribution p is given as [Timoshenko and S. 

Woinowsky-Krieger (1959)] 
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and integrating gives the deflection w at r as 
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where C1, C2, & C3 are constants of integration to be solved by the boundary conditions, a is 

the plate radius and D is the flexural rigidity of the plate given as 
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where  E is Young’s Modulus of the material, h the thickness and v  Poisson’s ratio. For the 

case of a plate clamped at the edges the slope must be zero at r=0 and r=a. Hence 

simultaneously from equation 5.76, C2 0  and thus C
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since the deflection at the clamped edge (radius a) is zero. Substituting these 

values for the constants of integration into equation 5.77 gives 
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where w(0) shown in Fig 5.27 is the central displacement at r=0. Substituting equation 5.80 

into equation 5.79 gives the profile of the membrane as a function of the radius as 
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For large deflections the stretching on the middle plain due to the tension N should be 

considered. Bending equations are modified to account for this where one method described 

by Timoshenko and S. Woinowsky-Krieger [1959] is valid for deflections of the order of 

one plate thickness. For v=0.3 a corrected version of equation 5.80 for the maximum 

deflection is given as   
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where it is assumed that deformed profile is still given by equation 5.81. Where w0/h  1 a 

power-series approach has been used [Hencky (1915)]. When modelling large displacements 

of uniformly loaded circular membranes the membrane deformations are described by a 

dimensionless displacement W which is given as 
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where a2n are the coefficients of a power series, W=w/a, =r/a and q=pa/(Eh). At the centre 

of the membrane where =0 and for a Poisson’s ratio of v=0.4, the power-series has been 

solved by the coefficients given by Fichter [1997]  with the result that 
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from which in a form similar to equation 5.82 gives 
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For a typical membrane coupled device w0/h  2 will be the case such that equation 5.85 is 

preferred to equation 5.82. The Timoshenko assumption that the profile of the deformed 

surface for large displacements is of the same form as for small displacements will be 

adopted for this work. 

5.5.2 Deriving the constant volume function 

A simple function was derived to account for how the internal pressure of the encapsulated 

liquid varies with deformation of the membrane due to the assumption that the liquid volume 

remains constant. The function was derived by equating the volumes given by classical 

bending solutions. For a given initial pressure pi the membrane in Fig 5.29 deforms to a 

maximum central displacement w0 at r=0. When the membrane is loaded by a force F onto a 

flat surface the internal pressure becomes pd. Within the contact radius d the profile of the 

membrane is now flat as in Fig 5.30. To obtain a simple function it was assumed that the 

deformed profile of the membrane in Fig 5.30 is equivalent to the annular membrane in Fig 

5.31. Due to the simplification of the problem, the pressure pf on the deformable part of the 

annulus is assumed to differ from the actual internal pressure pd by some function B such that 

2d

F
pBp fd         5.86 

The function B was obtained empirically and was expected to comprise a constant to correct 

for the approximation of the problem by the annular membrane, multiplied by some power 

of the ratio w0/h similar to the bending solution correction for the tension component. To 

solve for the displacements of the annular membrane, the boundary conditions are that, the 

slope must be zero at r=d and r=a and the deflection is zero at r=a. Solving the constants of 

integration for equation 5.77 gives the deflections outside of the contact area  wf as
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Equating the initial and final volumes described by the profiles in equation 5.80 and  

equation 5.87 gives 
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where w(d)  is the displacement at r=d. The solution of equation 5.88 in terms of the internal 

pressures factorises as 
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By setting the contact ratio  as 

ad /         5.90 

equation 5.89 can be simplified to 

vif BCpp         5.91 

where the constant volume function Cv is given as 

321vC        5.92

5.5.3 Membrane flat surface contact model 

For contact with a flat surface, the load F applied to the supports required to flatten a 

membrane to a radius d as in Fig 5.30 is obtained by substituting the calibration parameter 

and constant volume effect given by equation 5.91 into equation 5.85  giving 
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For a given load F equation 5.93 will enable the design of a membrane that will give a 

desired radius of contact d. The function B will be obtained empirically.  
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5.5.4 Validating membrane flat surface contact model 

The experimental set-up used to calibrate the membrane flat surface model is shown in Fig 

5.32. A fixture was designed to clamp various rubber discs. Water was pumped into the 

assembly via a control valve until the membrane bulges out and the desired initial deflection 

w0. A load F was applied by adding weights on the back face of the fixture and the radius of 

contact d the membrane made on the Perspex plate was visually noted. Experimental results 

for load as a function of contact radius were then compared to predictions from the contact 

model to determine the calibration parameter B.

A number of different membranes designs were tested so as to validate the model over the 

range of w0/h =3.33 to 13. A 50mm diameter 1mm thick silicon rubber disc, E=1.1MPa

(obtained by tensile test), was assembled in the fixture such that the initial central 

displacement w0 was either 8.5mm, 10mm and 13mm. In the other extreme a 2mm thick 

natural rubber disc, E=1.5MPa (obtained by tensile test) with an initial central displacement 

w0 of 7mm was used. The function B that calibrated equation 5.93 to agree with all the 

experimental data was 
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Two of the experimental results along with the predictions given by the calibrated equation 

5.93 are shown in Fig 5.33. The flat surface model can be said to have been validated. It 

follows that the non linearity of large displacements and the effect of the constant volume of 

liquid have been accounted for.

5.5.5 Membrane model - rough surface 

The approach adopted for numerical modelling of membranes is similar to the previous solid 

contact models. Fig 5.34 shows a membrane whose profile is initially described by a known 

function vr. The application of a rigid body displacement  forces the membrane onto the 

rough surface such that the profile becomes a complicated unknown function ur. For axi 

symmetry, the upward reaction from the surface at a point of contact can be modelled as the 

effect of a ring load applied to the membrane. Fig 5.35 shows the exaggerated membrane 

surface deformations due to the application of a single ring load of radius b and load 
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intensity q. The solution for the axi symmetric displacements wr can be modelled by a 

superposition of such ring loads. To derive the governing equations, firstly consider the 

circular plate of radius a where the outer edge is clamped as in Fig 5.36. A circular knife 

edge of radius b applies a load of intensity q, such that the load P bq2 is uniformly 

distributed. For small displacements the deflections w(r) for the outer portion of the plate are 

given by Timoshenko and S. Woinowsky-Krieger [1959] as 
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and for the inner portion, 
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where D is the flexural rigidity. For large displacements the tension component N as given in 

equation 5.85 can be included in equations 5.95 and 5.96 by substituting the flexural rigidity 

D for DN  given as 

D
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When the knife edge ring load is applied to the clamped plate in addition to global 

deformations due to bending and tension there will be some local deformation within the 

vicinity of the applied load. Libai and Simmonds [1998] provide the idea that the “correct” 

displacements can be obtained by including the Boussinesq solution for the deformations on 

a semi infinite body. The application of a ring load on to a clamped edge rubber disc would 

then result in the axi symmetric deflections w(r) given by a superposition of the bending 

solutions as in Fig 5.36 and solid body solutions as in Fig 5.37, which would result in the 

dimpled profile as in Fig 5.38. We can get some idea of what the relative magnitude of these 

dimples will be by approximating the solid body displacements by those that would arise 

when a rigid flat punch is pressed onto soft surface. When the membrane is in contact with a 

flat surface the radius of contact is d. Within the contact area the nature of contact is 

assumed to be similar to that of a flat semi infinite punch of radius d. For a contact pressure 

p the surface displacements wp of the punch which are constant over the radius r=0 to d are 

given as 
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Substituting equation 5.78  into equation 5.98 gives 
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For a membrane of radius a loaded by a uniform pressure p, the central displacement wo (Fig 

5.29), is obtained from equation 5.95 calibrated by the function B given as 
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The ratio between the displacement for the punch given by equation 5.99 over that for the 

membrane given by equation 5.100 gives the relative displacement as  
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where d/a=  is the contact ratio from equation 5.90. Typical dimple magnitudes md for 

=0.5 for the membranes considered are: 

Silicon rubber 25mm radius wo=10mm and h=1mm   1.5% 

Natural rubber 25mm radius wo=7mm and h=2.1mm   5.3% 

Since the magnitude of the solid body deformations compared to the bending deformations 

given by the approximation are shown to be relatively small then we need not be concerned 

about their effect on equations of equilibrium.  

Thus the solution for the membrane deformations w(r) due to an axi symmetric load 

distribution q(b) will be the superposition of the bending equations 5.95 or 5.96 (modified to 

account for tension by equation 5.97 and including the calibration term B from the flat 

surface model given by equation 5.113) with the solid body equation 5.43. The square root 

of the constant volume function Cv given by equation 5.92 is applied to the superposition 

(and is to also be included in the iterative technique described in section 5.5.6) which was 

found the most suitable way of including it. Integrating the superposition of bending and 
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solid body equations over the membrane radius a gives the rough surface membrane contact 

model for br  as 
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and for br
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When discretised into N and M elements this gives 
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The parameter A is a function required to calibrate the model and is to be determined by 

comparison to results given by the flat surface model. Equations 5.102 and 5.103 can be 

shown in simplified form as 
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where the matrix I(r,b) is known as the influence coefficients that describe the displacement at 

r due to a ring load of radius b of unit intensity. 

Examples of the form of the influence coefficients I(r,b) for a 7mm radius unit ring load 

applied to a silicon rubber membrane of 25mm radius wo=10mm and h=1mm and natural 

rubber membrane of 25mm radius wo=7mm and h=2.1mm membrane are shown in Fig. 5.39 

and Fig. 5.40 respectively. The individual contribution to the influence coefficients given by 

the bending and solid body solutions are also shown. 

5.5.6  Rough surface membrane model – numerical solution of equations 

The solution of a given membrane contact problem proceeds in a similar way to the solid 

contact model in section 5.4.4. The membrane will be given a rigid body displacement, and 

the overlap between the displaced membrane and rigid surface will be used in an iterative 

procedure to solve for the displacements and loads. It is suggested by Johnson [1994] that 

for tyre modelling the contact width of the deformed profile will relax to about 20% less 

than the value established for the overlap. Similarly when modelling membranes, it was 

found that where the central displacement was no more than half the membrane radius 

(wo<0.5a) that modelling of membrane contact was limited to a contact radius of about 

=0.5. A solution to this problem is to increase the initial profile of the membrane by 

multiplying it by some fraction of the constant volume function Cv.  The most appropriate 

fraction was found to be vC  since for this case when the solution converged the resulting 

contact radius was close to the value obtained by the overlap. Over the range of contact 

ratios considered (0.35 to 0.70) this effect enabled the rough surface model to be calibrated 

by a simple function that was independent of the contact radius. Since vC will be a factor 

in the profile of the membrane then it was for this reason that vC was used in the influence 

coefficients equations 5.102 and 5.103 so that the product would be Cv.

As an example of how the solution of the rough surface model proceeds, consider a rough 

surface to which the membrane is to be in contact with that is described by some function gr

which at some point has a maximum magnitude G. The unloaded membrane of radius a and 

displacement w0 as shown in Fig. 5.41 just sits on the rough surface. The profile of the 

membrane vr is given by 
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The membrane is then given a rigid body displacement  such that it bisects the rough 

surface at a radius r=d as shown in Fig. 5.41. Substituting  for vr  and r for d in equation 

5.108  gives an estimation of the contact ratio i as 
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The constant volume function is then accounted for in the initial profile of the membrane. 

Applying the square root of the constant volume function to equation 5.108, the adjusted 

profile of the membrane vr that includes the Cv function is given as 
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For the example the arbitrary profiles of the membrane vr and the wavy surface gr are shown 

in Fig 5.42. To enable the solution, the membrane is then given the rigid body displacement 

  as shown in Fig 5.42 such that the overlap is described by a function w  where

rrr vgw rr vg     5.111 

or

0rw rr vg       5.112 

For the example the overlap function w  is shown in Fig 5.43. An initial load distribution of 

q(b) is then assumed as a seed (a uniformly low value seems best) and a first estimate of the 

deformations w(r) is obtained by equation 5.107. The function q(b) is then adjusted for the 

next iteration n+1 by equation 5.60. For the membrane example, after a number of iterations 

the solution converged to a load distribution q(b) that is shown in Fig. 5.44 along with the 

displacement function w(r) shown in Fig. 5.45. Adding the displacements w(r)  and the rigid 

body displacement rv  together (both shown in Fig. 5.45) provides the deformed final 
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profile of the membrane u(r) as shown in Fig. 5.46. From Fig. 5.44 the total load is obtained 

by equation 5.62 and from Fig. 5.46 the contact area is obtained by equation 5.63. 

Convergence of the solution is monitored by the technique discussed in section 5.4.5. 

5.5.7  Calibrating the rough surface membrane model 

Calibration of the rough surface model was performed by using it to model contact with a 

flat smooth surface, solving for load as a function of contact radius and then comparing the 

results to those obtained using the already verified flat surface membrane contact model. 

Calibration would be achieved by finding some function to fit the parameter A in equations 

5.102 and 5.103. It was expected that any difference by the rough surface model predictions 

would be due to the technique of estimating the contact ratio  in equation 5.109. Different  

methods of including the constant volume function were tried. All required some initial 

guess of what the final contact ratio would be. The technique chosen was the one that had 

the least undesirable effect and for which a simple function would account for any deviation 

from flat surface model results. 

The calibration function A was determined by initially setting it to unity and plotting the 

ratio of the load predicted by the rough surface model over that predicted by the flat surface 

model required to deform a membrane to a contact ratio . A number of cases were 

investigated in order to establish the calibration of the model over a range of membrane 

sizes, flexibility and degree of contact.  

Examples of the ratios of the load predicted by the rough surface model over predictions by 

the flat surface model are shown in Fig. 5.47. The results shown are for a silicon rubber 

1mm thick w0=10mm and a natural rubber 2.1mm thick w0=7mm membrane for contact 

ratios in the range =0.35 to 0.75. Over the =0.35 to 0.70 contact range the difference 

between the rough surface and flat surface model solutions is fairly constant. Above the 

contact ratio of 0.7 the difference starts to climb rapidly. This is due to there being greater 

significance in the difference between the converged result and initial estimation of the 

contact ratio. As such the constant volume function becomes dominant at higher contact 

ratios. It is not intended to use the model at contact ratios above 0.7 such that over the range 

of interest the approximate constant difference between the two solutions allows a function 

to be found that is independent of contact radius. It was found that the difference between 

the two solutions for a range of membranes could be adequately approximated by function  
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Fig. 5.48 shows the ratios of the load predicted by the calibrated rough surface model (where 

equation 5.113 is applied to equations 5.102 and 5.103) over that given by the flat surface 

model for the two membranes considered. Good agreement between the predictions by either 

model can be seen. 

In conclusion, the rough surface membrane contact model has been validated for contact 

with smooth flat surfaces. Development of such a contact model would be a very difficult 

problem unless approached by the kind of simplified derivation adopted by the author. 

Leaving some of the details out allowed most of the physical behaviour to be described. The 

necessary calibration was achieved by comparing model predictions to those from the flat 

surface model which had been validated against experimental results. A desirable simple 

calibration function which was independent of contact radius was obtained.  

5.6 Feasibility of dry rubber coupling transducers when testing concrete 

An experimental study was conducted to examine the feasibility of dry coupling to a 

concrete surface using a hand held rubber disc or membrane coupled device. Tests were 

carried out by coupling transducers to the rough concrete surfaces described in chapter 5.3.2. 

The performance of dry coupling was given by the transmission ratio which was expressed 

by comparing  the transmission through a rubber interface to that for grease coupling. Model 

predictions were compared to experimental results.  

5.6.1 Obtaining experimental data 

The experimental set-up for rubber disc coupling was as shown in Fig. 5.49. A 150mm by 

150mm square by 300mm long 8mm aggregate concrete block with both smooth floated and 

steel shuttered surface finishes was obtained. The transducers used were of 32mm diameter 

with a 250kHz centre frequency. To avoid superposition of the received signal by reflections 

off boundaries broad band signals are desirable which was achieved by exciting these 

transducers well off centre frequency at 150kHz with a 5 cycle tone burst. The receiving 

transducer was always bonded to the lower surface of the concrete block. Initially the 
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transmitter was grease coupled to the upper rough surface. The maximum amplitude of the 

received signal for grease coupling was recorded. The upper rough surface was then cleaned 

with a solvent and allowed to dry. Various rubber discs were then used to solid couple the 

transducer to the rough surface. Weights were added to the back face of the transducer so as 

to load the interface. For a given applied load, the maximum amplitude of the received 

signal for solid coupling was then divided by that for grease coupling to provide the 

fractional transmission.

For membrane coupling a fixture was designed to hold the same 250kHz immersion 

transducer as shown in the schematic in Fig 5.50. Silicon or natural rubber discs were 

clamped in the fixture. The fixture was assembled underwater, and during assembly, the 

transmitter was pushed down into the fixture and then clamped when the membrane had 

bulged out to the desired initial deflection. The use of different rubbers, thickness and initial 

deflections enabled a variety of membrane designs to be tested. The procedure for obtaining 

the experimental data was the same as for rubber disc coupling.  

5.6.2 Comparing model predictions to experimental data 

Experimental results are plotted for fractional transmission as a function of applied load and 

compared to model predictions to assess the feasibility of rubber disc coupling. For 

experimental results the transmission ratio is taken as the maximum amplitude of the 

received signal for solid coupling over that for grease coupling. Model predictions took the 

predicted fractional transmission (see section 5.3.5) to equal the ratio of the predicted true 

area of contact over the area of the transducer face. Model predictions are obtained by giving 

the rubber device a rigid body displacement, running the program until the solution 

converges and obtaining load and contact area parameters. The device is then given a larger 

rigid body displacement and the program is rerun from the beginning. It is preferable to 

solve over a desired load range, since predictions for load were shown to converge much 

faster than contact area. By running the program for sufficient iterations the range of rigid 

body displacements required to provide predictions over a desired range of loads can be 

obtained.

The experimental results shown in Fig. 5.51 are for various thicknesses of silicon and natural 

rubber discs in contact with the steel shuttered concrete surface. It is evident that the results 

display linearity between signal transmission and applied load. There is little difference 

between the performance of the rubber discs. In general it appears that softer, thicker rubber 
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discs couple marginally better than thinner, stiffer discs. This is what would be expected 

since for a given load a stiffer material would conform less to a surface. Additionally for 

rubber backed by a rigid substrate, thinner material behaves as if stiffer, which is explained 

by the function derived in section 5.4.3 that corrects for a finite thickness of material. For a 

2kg load that could be applied by hand, dry coupling of transducers results in about a 36dB 

loss in signal strength compared to grease coupling. The model predictions shown in Fig. 

5.52 agree well with the experimental results which goes some way towards validating the 

argument given in chapter 5.3.5 that signal transmission is proportional to the true contact 

area for low load rubber-concrete contact. One reason for any difference between the 

magnitude of  model predictions and experimental results could be attributed to the 

approximation of the rough surface by a discretised set of data. Here, predicted transmission 

is generally greater than for experimental results which suggest that the discretised surface 

topology is of longer wavelength than the actual surface tested (i.e. the discrete sampling of 

the surface topology has acted as a low pass filter). Due to the approximation of the surface 

topology by discrete data, the experimental results are smoother, since for a small change in 

load there will be a small corresponding change in contact condition due to the greater 

number of contacts made or lost. Frequency dependence was not considered for model 

predictions since the experimental investigation described in chapter 5.3 found it to be 

negligible for this type of contact.  

Fig. 5.53 shows the experimentally measured transmission for coupling with various 

thicknesses of silicon and natural rubber discs to the floated concrete surface. It is clearer 

here that transmission improves for thicker softer rubber than for the contact results with the 

shuttered surface. The results suggests that it is reasonable to assume linearity of 

transmission as a function of applied load up to a fractional transmission of about 0.2. This 

would agree with the findings of Haines [1980] and is a major part of the transmission being 

proportional to contact area argument that relies on contact zones being considered to act in 

isolation. For the 2kg load, dry coupling of transducers results in about an 18dB loss in 

signal strength compared to grease coupling. The magnitude of the model predictions shown 

in Fig. 5.54 agree well with the experimental results. As with experimental results, 

predictions show some evidence that a variation in device rubber type or thickness effects 

the degree of contact. By comparing the predictions for coupling to the shuttered surface to 

those of the floated surface, the model clearly displays the difference in the degree of  

transmission that one could expect when coupling either of these surfaces. Thus overall the 

performance of the solid contact model is very satisfactory. 
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The experimental results shown in Fig. 5.55 are for various membranes in contact with the 

shuttered concrete surface. The variable wo refers to the initial bulge of the membrane and h

represents the thickness of the rubber. The dashed line is the 1mm thick silicon rubber disc 

experimental results taken from Fig. 5.51 to emphasise the advantage in using a membrane. 

Here for a 2kg load a possible 6dB increase in transmission ratio for a membrane over that 

for disc coupling can be expected. Comparing the model predictions in Fig. 5.56 with the 

experimental results reveals good agreement but not to the same extent for solid contact 

modelling. It is difficult to describe what effect a change in membrane design has on 

coupling characteristics from these results alone.  

To investigate what the effect of varying membrane design parameters, when coupling to the 

floated surface only silicon rubber membranes were tested, since solid coupling showed that 

soft rubbers would couple better than hard rubbers. The experimental results shown in Fig. 

5.57 are for 2mm thick silicon rubber membranes in contact with the floated concrete 

surface. The dashed line is the 2mm thick silicon rubber disc experimental results taken from 

Fig. 5.53 to emphasise the advantage in using a membrane. As with coupling to the shuttered 

surface, the results again suggest that a 6dB increase in transmission can be expected when 

coupling with the membrane. This effect is most likely due to the membrane being more 

compliant than a rubber disc. Comparing the model predictions in Fig. 5.58 with the 

experimental results reveals good agreement. Both experimental results and model 

predictions are characterised by a steeper initial rise in fractional transmission for an 

increase in applied load when compared to rubber disc coupling. For membrane devices the 

transmission then flattens off with increasing loads where the membrane with the lowest 

initial deflection w0 has the lowest and flattest signal transmission for increased loads. This 

is because the contact radius becomes greater than the radius of the transducer, thus some of 

the applied load is wasted on making contact outside of the ultrasonic beam. It is thus 

important to design the membrane such that at around the desired applied load the deformed 

membrane makes a contact radius of the same order as the transducer radius. Overall the 

general characteristics of membrane contact have been adequately predicted. 

The experimental results shown in Fig. 5.59 are for 1mm thick silicon rubber membranes in 

contact with the floated concrete surface. Again, the membrane with the lowest initial 

deflection w0 has the lowest and flattest signal transmission for increased loads. If levels of 

transmission were sufficient then this effect could be exploited to achieve consistent 

coupling. Comparing the results to the ones for the 2mm thick membranes in Fig 5.57, 

reveals that the stiffer 2mm membranes generally couple better than 1mm  membranes. This 

effect is duplicated in the model predictions shown in Fig 5.60. The effect was not as 



 157

expected, since intuitively it was thought that a thinner membrane, such as a balloon, would 

be the most appropriate design. To try to understand the cause, Fig 5.61 and Fig 5.62 show 

the predictions for a 0.75mm and 1.5mm thick membrane respectively coupled to a simple 

surface. The case is rather simplified but it does show that for thinner, more flexible 

membranes, the membrane will simply touch a greater number of peaks as the load is 

increased. For the thicker, more rigid membrane, the deformed membrane will make contact 

with less peaks, but bed down more, resulting in a potentially higher true area of contact for 

the same applied load. This effect can also be explained by examining the approximation for 

local deformations given by equation 5.101. In the form of equation 5.101 any increase in 

flexural rigidity due to an increase in thickness h or ratio wo/h, or the amount of contact ,

increases the magnitude of the dimples which results in the membrane being able to support 

increasingly greater local deformations.  

5.6.2 Discussing dry solid coupling of transducers 

The degree of coupling made by a rubber coupled device is more dependent on the surface 

roughness than on the device design. Fig. 5.63 through to Fig. 5.66 show examples of 

predicted axi symmetric deformations of solid coupled devices loaded by 2kg onto rough 

concrete surfaces. Silicon rubber disc coupling onto the steel shuttered surface is shown in 

Fig 5.63. A zoom of part of the contact area is shown in Fig 5.64, which illustrates the low 

degree of contact made when coupling to this surface. Coupling to the floated concrete 

surface by a silicon rubber membrane is shown in Fig. 5.65. A closer look at how the 

membrane conforms with the rough surface is shown in Fig 5.66. 

For dry rubber disc coupling to the shuttered concrete surface with a 2kg applied load, the 

experimental results and predictions suggest that a 36dB loss in signal strength per 

transducer can be expected. Thicker, softer rubber discs tend to couple marginally better to a 

rough surface. Membrane coupling of transducers was shown to improve transmission by 

about 6dB, where membrane design was more critical than for disc coupling. Softer, thicker, 

larger wo (generally more rigid) membranes were shown to couple better, which was not 

what might have been intuitively expected. Results for the floated surface represent perhaps 

the smoothest surface that might be encountered, where the loss in signal strength per 

transducer was about 12dB to 18dB for membrane and rubber disc coupling respectively. 

When testing concrete, signal strength is at a premium due to the severe attenuation within 

the concrete. Thus the experimental results and model predictions suggest that it is unlikely 
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that dry coupling ultrasonic transducers to concrete is feasible except when testing over short 

path lengths or on smooth surfaces (similar to the floated surface).  

Model predictions agreed well with experimental results. Greatest confidence is given to the 

results provided by the solid contact model. Its derivation was straight forward requiring no 

empirical functions for its calibration. A versatile function was derived to account for a finite 

thickness of rubber backed by a rigid substrate which was shown to agree with a dedicated 

function for contact by rollers. The modelling of membrane deformations was a far more 

difficult problem to undertake made more complex by the effect of the encapsulated volume 

of liquid. The iteration technique developed initially for the solid contact model was not so 

well suited to solving contact for the membrane model. This is due to the much larger ratio 

of the magnitude of the surface roughness over the overlap function, such that the membrane 

model required about a 20 to 40 fold greater number of iterations than the solid contact 

model to converge. Due to the difficulties involved in developing the membrane model it 

was encouraging that predictions were found to agree so well with experimental results. The 

agreement of the solid contact model predictions with experimental results goes a long way 

in validating the argument that for low load rubber concrete contact the signal transmission 

is proportional to the true area of contact. 

For dry coupling of transducers, membrane coupled devices were shown to provide 

improved signal transmission over rubber disc coupling. Additionally it was found that for a 

membrane device the signal transmission flattened off more appreciably than when disc 

coupling at higher loads. It follows that since the transmission is proportional to contact area, 

a membrane device can conform better to a rough surface and provide more consistent 

coupling over a range of loads. Thus in conclusion, membrane devices are preferred to discs 

when dry solid coupling ultrasonic transducers to rough concrete surfaces. 

 5.7 Wet membrane coupling of transducers 

Although the transmission across a dry coupled interface is not sufficiently strong for most 

practical applications, the use of rubber coupled devices may still be attractive when wetted 

just with water. This is possible because the void volume at the interface is very much 

smaller that it would be without the rubber, so very little water is needed and furthermore it 

does not need to be viscous in order to be retained. Therefore the inconvenience of grease 

coupling can still be avoided. For dry coupling of transducers, membranes were shown to 

potentially conform better to a concrete surface and provide a means of more consistent 
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coupling. Thus for the wet coupling investigation the use of membrane devices only will be 

considered. The rough surface membrane contact model was used to predict what volume of 

water would be required to fill the voids left when a membrane couple device is pressed onto 

a concrete surface. Modelling was only conducted with the timber shuttered, roughest 

concrete surface since a membrane would have to adequately couple to this surface. From 

these predictions, a prototype membrane shoe (similar to the schematic in Fig. 5.27) was 

designed to hold the PUNDIT 54kHz 50mm diameter transducers.  Experiments were 

conducted to assess the relative signal strength and repeatability of wet membrane coupling 

compared to conventional grease coupling. 

5.7.1 Predicting reduction in volume of couplant required 

Varying h, the thickness of material, and w0, the initial deflection, enabled the characteristics 

of different membrane device designs to be investigated. The thicknesses of silicon rubber 

considered were 0.75mm, 1.0mm and 1.25mm. For a given thickness, nominal values of w0

were chosen by solving the flat surface model for the parameter w0 for the applied load 

F=2kg and the contact ratio  =0.75. Additional designs were obtained by having 

membranes with a value of w0 of ±20% off the norm. The rough surface membrane contact 

model was used to predict what volume of water would be required as a function of applied 

load to couple various 50mm diameter membranes to the timber shuttered concrete surface 

shown in Fig 5.3b (the roughest surface considered feasible to solid couple to without any 

prior surface preparation). The predicted volume, Vol, of couplant required to adequately 

couple the deformed membrane to the rough surface was obtained by subtracting the rough 

surface profile g(r) from the deformed membrane profile u(r)  and integrating over the radius r

given by 

R

rr rdrguVol

0

2        5.114 

The maximum volume of water that could be conveniently applied to a membrane was 

thought to correspond to the amount that would be left on the membrane surface after it had 

been wiped over with a damp sponge. The mass of water that just coats a 50mm diameter 

membrane was found experimentally to be approximately 0.05mg which equates to a 

volume of 50 L. The predicted volume of grease required to conventionally couple a 

transducer to a rough surface was obtained by first finding the maximum height G of the 
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digitised surface g(r). The height G was then substituted for u(r) in equation 5.114 and the 

volume was then predicted by integrating over the radius of the transducer R.

Fig 5.67 through to Fig. 5.69 show the predicted volume of couplant required (or void 

volume) as a function of applied load. Ideally a design will lead to a void volume of less 

than 50 L for a load under 2kg and the void volume should reduce slowly for increased 

loads so as to permit consistent coupling. Additionally the initial deflection should be as 

large as possible. All the membrane designs show the characteristics of consistent coupling 

to some extent. The most promising design that satisfies these criteria is the 0.75mm thick 

membrane with an initial deflection of 7.5mm to 10mm as shown in Fig. 5.67. A comparison 

between the remaining void volume when the optimum membrane is loaded by 1.5kg and a 

transducer sitting on the timber shuttered surface is shown in Fig. 5.70. A membrane shoe 

using the optimum membrane dimensions was designed to hold the PUNDIT 54kHz 

transducers (similar to the schematic in Fig 5.27) to enable some experiments to be 

conducted to assess the performance of wet membrane coupling. 

5.7.2 Experimental investigation into the performance of wet membrane 

coupled devices. 

A 250mm diameter 300mm long 5mm aggregate concrete block was obtained. The block 

had been cast in a cylindrical steel mould where the end of the block that was open to the air 

during hydration had a very rough floated finish. An area of this end was ground flat onto 

which a standard PUNDIT 54kHz transducer was bonded which would act as the receiver. 

The other end had been in contact with a rough timber board during hydration and had a 

very similar appearance to the surface in Fig 5.3b. To this end the transmitting transducer 

would be either grease or wet membrane coupled. The investigation entailed coupling the 

transmitting transducer by either technique a total of ten times to the rough surface, and 

recording the received signal each time. From either set of data the mean signal amplitude 

was obtained and this was plotted along side the maximum and minimum received signal 

amplitudes received. Presenting the results this way gave some idea of the consistency of 

coupling and enabled comparison of the signal transmission between conventional and wet 

membrane coupling.  

Fig 5.71 and Fig. 5.72 show the maximum, mean and minimum received signals for the 10 

repeat tests for conventional grease and wet membrane coupling respectively. A horizontal 

line has been drawn to represent the magnitude of the PUNDIT threshold. Comparing the 
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mean signal for conventional grease coupling with that for wet membrane coupling reveals 

that the transmitted signals are generally of the same order of magnitude. Marginally greater 

transmitted signal amplitudes are obtained using the membrane device. The signal amplitude 

deviation from the mean is marginally less for the membrane device which suggests that it 

should allow more consistent coupling. Conventional grease coupling to the concrete surface 

requires more effort to ensure a minimum amount of grease is used and the couplant is not 

contaminated by grit. It is also uncertain whether there are any air pockets once the 

transducer is coupled to the surface. By contrast, with the membrane device since the rubber 

and film of water are squashed into the voids, too much or contaminated couplant has little 

effect on the degree of coupling.  

Since the PUNDIT apparatus uses a threshold crossing technique to determine signal 

arrivals, more consistent signal amplitudes will result in more consistent measured signal 

transit times. Thus this brief investigation has highlighted that wet membrane coupling of 

ultrasonic transducers can offer a significant improvement over conventional grease 

coupling when inspecting concrete structures.  

5.8  Conclusion 

Conventional grease coupling of ultrasonic transducers to a concrete surface is inconvenient, 

inconsistent and time consuming. An investigation was carried out to research possible 

alternative methods of coupling the transducers. It was thought that a rubber coupled device 

might improve the inspection technique.  

Three concrete surfaces were considered that were thought to represent the range of surfaces 

that a transducer might be coupled to without the need for prior surface preparation. The 

topology of the sample concrete surfaces was digitised so as to describe them by height and 

wavelength parameters.  

Experiments were then carried out on these surfaces to investigate the characteristics of 

signal transmission through a rubber rough surface interface. Experimentally it was found 

that the signal transmission was a weak function of frequency and that the transmission was 

proportional to the applied load. It was thus argued that the signal transmission was 

proportional to the true area of contact for a low load rubber-rough surface interface. 
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Models were derived to predict the surface deformations of solid coupled devices when 

pressed onto a rigid rough surface and hence estimate signal transmission through the 

interface. Considerable saving in computation time and simplification of derivations was 

achieved by considering the devices and hence the surface roughness to be axi symmetric in 

profile. A simple to program, iterative solution technique was derived to solve such contact 

problems. Solid contact model predictions agreed well with comparable classic solutions for 

contact of profiled bodies with flat surfaces. The membrane contact model was validated 

against experimental results. 

Predictions and experimental results for signal transmission across a rubber-concrete 

interface found that a membrane device can offer a 6dB increase in transmission over disc 

coupling. For coupling to a concrete surface that had been in contact with steel shuttering 

during hydration a 30dB loss in signal strength per transducer could be expected. Since 

concrete surfaces are often rougher than this and signal strength is at a premium when 

testing concrete it is unlikely that dry rubber coupling of transducers would prove feasible, 

except when testing short path lengths or smooth concrete surfaces (such as the floated 

surface on which some tests were conducted). 

Although the dry rubber coupling of transducers proves not to be practical, the membrane 

devices may appear to be attractive when wetted just with water, which avoids the 

inconvenience of grease coupling. Coupling with a thin film of water was shown to be 

possible because the void volume at the interface is very much smaller that it would be 

without the rubber. Unlike dry coupling, the signal transmission for a wetted membrane 

device was shown to be of similar magnitude to a grease coupled transducer. Additionally 

repetitive tests found that the membrane technique resulted in more consistent coupling. The 

chapter that follows this one investigates further the performance of wet membrane coupling 

of transducers which has shown potential to improve the ultrasonic inspection of concrete 

structures. 
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Compliant Solid 

a) Disc b) Hemisphere c) Membrane 
Figure 5.1.  Various compliant designs for the solid coupling of ultrasonic transducers. 
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Figure 5.2. Indenter designs for the solid coupling of ultrasonic transducers. 
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Figure 5.3b. Topography of sample concrete surface which had been in contact with timber 
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Figure 5.5. Experimental set up to investigate the characteristics of ultrasonic transmission 
across a rubber concrete interface. 
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Figure 5.15. Converged contact load distribution for hemisphere example. 
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Figure 5.19. Solution convergence for area 
(normalised by value after 10000 iterations).
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Figure 5.24. Comparison between model predictions and classical solution for a punch. 
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Figure 5.25. Comparison between model prediction and classical solution for a hemisphere. 
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Figure 5.26. Comparison between model prediction and classical solution for a cone. 
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Figure 5.32. Experimental set up to calibrate flat surface membrane contact model. Observing 
the contact radius d as a function of applied load F.
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Figure 5.38. Superposition of Fig. 5.36 and Fig 5.37 to produce dimpled profile. 



 178

0

50

100

150

200

250

0 5 10 15 20 25 30

Radius  mm

Superposition of solid body

and membrane deformations

to produce dimpled profile

Membrane deformations

Solid body deformations

H
ei

gh
t 

m

Figure 5.39. Membrane contact model influence coefficients for a 1mm thick, w0=10mm, 25mm 
diameter silicon rubber membrane. The contribution given by the solid body and membrane 
deformations to the overall superposition are shown separately. 

0

10

20

30

40

50

60

0 5 10 15 20 25 30

radius mm

Superposition of solid body

and membrane deformations

to produce dimpled profile

Membrane deformations

Solid body deformations

H
ei

gh
t 

m

Figure 5.40. Membrane contact model influence coefficients for a 2.1mm thick, w0=7mm,
25mm diameter natural rubber membrane. The contribution given by the solid body and 
membrane deformations to the overall superposition are shown separately. 



 179

-10

-5

0

5

10

0 5 10 15 20 25Radius

Membrane

original profile vr

Surface g r

Rigid body

 displacement

Membrane

Displaced profile ( v r  - )

Estimate of contact radius d

H
ei

gh
t

Figure 5.41. Membrane contact model solution. Determine contact radius from overlap of 
displacement membrane with rough surface. 

-15

-10

-5

0

5

10

0 5 10 15 20 25Radius

Adjusted initial

membrane profile v r

Surface g r

Adjusted displaced

membrane ( v r  - )

H
ei

gh
t

Figure 5.42. Adjusted initial membrane profile. Determine overlap function. 



 180

0

5

10

15

0 5 10 15 20 25Radius

Overlap Function w' r

ab

b
bbrr

qIw
0

,

bn

bnb

bnbn
w

ww
qq

,

,
,,1 1

ab

b
bbrr

qIw
0

,

bn

bnb

bnbn
w

ww
qq

,

,
,,1 1

H
ei

gh
t

Figure 5.43. Solution iteration with overlap function. 

0

2

4

6

8

10

0 5 10 15 20 25Radius

Pressure distribution q r

Figure 5.44. Converged contact load distribution for membrane example. 



 181

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25

Radius

Displacement Function w r

displaced membrane ( v r  - )

H
ei

gh
t

Figure 5.45. Converged displacement function along with rigid body displacement. 

0

1

2

3

0 5 10 15 20 25
Radius

Surface g r

Deformed membrane

profile u r

H
ei

gh
t

Figure 5.46. Converged contact solution for membrane example. 



 182

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Contact ratio 

Results for

w 0 =10mm and h =1mm

silicon rubber membrane

Results for

w 0 =7mm and h =2.1mm

natural rubber membrane

L
oa

d 
ra

ti
o 

(r
ou

gh
 o

ve
r 

fl
at

 m
od

el
 p

re
di

ct
io

ns
)

Figure 5.47. Difference between solutions given by the uncalibrated rough surface model and 
that given by the flat surface model for 1mm and 2.1mm membranes in contact with a flat 
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given by the flat surface model for 1mm and 2.1mm membranes in contact with a flat smooth 
surface. Results plotted as the load ratio as a function of contact ratio. 
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Figure 5.49. Experimental set up to investigate the feasibility of rubber disc coupling ultrasonic 
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Figure 5.52. Predicted transmission for dry 
rubber disc coupling to steel shuttered 
concrete surface. 
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Figure 5.53. Measured transmission for dry 
rubber disc coupling to floated concrete 
surface. 

Figure 5.54. Predicted transmission for dry 
rubber disc coupling to floated concrete 
surface. 
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Figure 5.56. Predicted transmission for dry 
membrane coupling to steel shuttered concrete 
surface. 
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Figure 5.58. Predicted transmission for various 
2mm thick silicon rubber membranes coupled 
to floated concrete surface. 
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comparison. 

Figure 5.60. Predicted transmission for various 
1mm thick silicon rubber membranes coupled 
to steel shuttered concrete surface. 
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Figure 5.64. Zoom in of the typical contact 
area shown in Fig. 5.63. 
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Figure 5.68. Predicted void volume as a 
function of applied load for 1.0mm thick 
silicon rubber membranes in contact with 
timber shuttered concrete surface. 
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Figure 5.70. Comparing the void volume left 
by the optimum membrane loaded by 1.5kg 
and a transducer placed onto the timber 
shuttered concrete surface. 
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Chapter 6 

Application – Wet membrane v Conventional coupling 

6.1 Introduction 

A popular method when performing the routine inspection of concrete structures is to find 

the velocity of sound in the concrete. A number of tests are often carried out on a grid 

marked out on the structure so as to construct a contour map of the velocity of sound. Such a 

map may often yield valuable information concerning variability of both material and 

construction standards [J.H. Bungey  and S.G. Millard (1996)]. The application of the 

ultrasonic transducers requires that a liquid couplant, whose required viscosity depends on 

surface roughness, be applied between the transducer face and the concrete surface so as to 

fill the significant air gaps and thus facilitate signal transmission. Application of couplant to 

each grid point and the removal after testing proves both inconvenient and time consuming, 

hence the motivation to research alternative methods. It was suggested in Chapter 5 that 

ultrasonic inspection of concrete could be significantly be improved by solid coupling the 

transducers to the structure under test. Models were derived to predict the contact made by 

such devices so as to enable design optimisation. For a hand held device it was shown that 

only low levels of contact were made when dry rubber coupling the transducer. For most 

practical inspections this results in unacceptably low signal strengths. Alternatively an initial 

investigation found that by wetting a membrane coupled device with water, signal 

transmission was comparable to that for grease coupling and the received signal amplitudes 

were more consistent. This chapter reports on the application of wet membrane coupling, 

where its performance when inspecting a grid is compared to conventional grease coupling. 

Prototype membrane shoes were designed to fit to standard PUNDIT transducers. The 

derived membrane contact models were applied to optimise a membrane design. 

6.2 Prototype membrane shoes 

The design specification for a membrane shoe was that it should provide a means by which a 

standard ultrasonic transducer could be conveniently coupled to a concrete surface. The 

device should be robust, durable, compact and it should be straight forward to attach and 

retain the transducer requiring no force greater than can be applied by hand or special tools. 
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A general assembly of the prototype device is shown in Fig. 6.1 along with a photograph in 

Fig. 6.2. A commercial device would ideally do without most of the bulky aluminium body. 

Water was used as a liquid medium. The transducer is grease coupled to the Perspex plate 

whose acoustic impedance is well matched to water and the rubber membrane. Being 

transparent it allows inspection of the assembly for possible air bubbles. For the membrane, 

since the testing of concrete is conducted typically below 100kHz, the damping of the 

ultrasonic signal by the rubber is negligible. This allows selection of the membrane material 

from a wide range of compounds available. The material selected for the membrane was 

MOSITES 1453D high strength silicon rubber. A range of sample sheets of various 

thickness and surface finish were kindly supplied by Aerovac Systems (Keighly) Ltd, 

Keighly, West Yorkshire. M1453D is a high quality, high strength silicone rubber compound 

developed in the mid 1960s for aerospace applications. The material can withstand 

prolonged exposure to elevated temperatures and pressures and resist aggressive attack by a 

volatile liquid. The material has been used to manufacture inflatable pressure bags for 

applications were dimensional stability is important. These features may not be specifically 

required for exposure to civil engineering environments, but the material was selected for its 

durability characteristics. Additionally it is available with a textured fabric like surface 

finish, which was found to allow retention of the applied film of coupling water. Material 

properties of this rubber given by the supplier are shown in Table 6.1. 

Physical Property Value 

Hardness 50 shore A 

Tensile Strength 9.66Mpa 

Elongation at break 650% 

Modulus at 300% Elongation 1.75Mpa 

Tear Strength 40Mpa 

Specific Gravity 1.15 

Table 6.1  Physical properties for MOSITES M1453D Silicon Rubber. 

Component drawings for membrane shoes to suit the PUNDIT 54kHz and 83kHz 

transducers are shown in Appendix 2 in Fig. A2.1 and Fig. A2.2 respectively. The fixture is 

assembled underwater. The Perspex plate is secured onto the body by four counter sunk 

screws, squashing the rubber o ring. The silicon rubber disc is held in place by screwing 

down the clamp plate. The rubber deforms around the dimpled profile on the body face 

which provides a very effective means of securing the membrane under a pressure. Water is 
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pumped into the assembly via the control valve until the membrane bulges out to just above 

that which is desired. Finally, the membrane is allowed to deflate, letting out any air 

bubbles, and the control valve closed when the membrane reaches the desired initial 

deflection.

The experimental comparison described in this chapter used the PUNDIT 54kHz 

transducers. For these transducers a 50mm diameter rubber disc is used for the membrane, 

where the thickness h and initial deflection wo are determined using the rough surface 

membrane contact model. The technique is described in detail in section 5.7. The selection 

was made by observing the predicted void volume left between the rubber and various rough 

surfaces when the membrane device is loaded by around 2kg.  The void volume should be 

less than that which coincides with the volume of a smear of water applied to the membrane 

face. This requirement was predicted to be satisfied by having a silicon rubber membrane of 

0.75mm thick and 10mm initial deflection. For this set up, Fig. 6.3 and Fig. 6.4 show the 

predicted volume of couplant as a function of applied load required to couple the device to 

the steel and timber shuttered surfaces respectively.  

6.3 Experimental description 

The purpose of the experiments was to assess the performance of wet membrane coupling of 

transducers compared to conventional grease coupling. Performance was measured as the 

time taken to complete the inspection of a complete grid, the degree to which the results 

were repeatable and the convenience of a technique.  

For the comparison a 30mm spacing 10 by 10 position grid was marked out on two different 

concrete blocks. The flat block had been in contact with steel shuttering during hydration, 

photographs of which are shown in Fig 6.5a and Fig 6.5b. The surfaces were similar to the 

digitised surface shown in Fig. 5.3a being relatively flat with the appearance of a medium 

grade sand paper. It would conventionally be advised to viscous couple to this surface using 

a light grease. The rough surface block shown had two different surfaces. On one side the 

surface had a rough floated finish as shown in Fig 6.6a and Fig 6.6b. The other side had been 

in contact with timber shuttering during hydration, and is shown in Fig 6.7a and Fig 6.7b. 

This surface was similar to the digitised surface shown in Fig. 5.3b being perhaps borderline 

as to whether some prior surface preparation should be performed. On the rough surface 

concrete block the use of a stiffer grease would be recommended when conventional 

coupling.  
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For the tests, the PUNDIT equipment manufactured by CNS Farnell of London was used, 

which is the standard equipment used in the UK for through transmission testing of concrete. 

A detailed description of The PUNDIT apparatus and operation is given in Chapter 2. Fig. 

6.8 shows a photograph of the PUNDIT apparatus and 54kHz transducers along side some 

prototype membrane shoes.  

For either technique, the test involved measuring and recording the signal transit time at 

each of the one hundred grid points, and then repeating the inspection from scratch. As with 

through transmission testing of large structures, the co-operation of two operators was 

required. Conventional testing of concrete was conducted first. The viscous couplant used 

was Swafega, which is a jelly manufactured by Polycell, normally used for cleaning hands 

but often used when testing concrete structures. The couplant was applied to each grid point 

prior to testing. When testing numerous grid points, this method was found to be more 

convenient and less messy than when directly applying couplant to the face of the transducer 

as in Fig. 6.9. The time taken to apply the couplant to the complete grid was noted. The 

transducers were then coupled to each grid point and the signal transit time measured and 

noted. Discretion was used in that if the displayed measured signal transit time wandered off 

or was unrealistically low then transducers were uncoupled, couplant or water reapplied and 

the test was repeated. Prior to coupling to the next grid point the transducer face was wiped 

clean. The time taken to measure the signal transit times for the complete grid was recorded. 

The grid was then cleaned of couplant, for which the time taken was noted. The test 

procedure was then repeated for a new set of data. Following this, tests were conducted for 

the wet membrane technique. The transducers where coupled to the Perspex plate on the 

membrane shoes by smearing a light grease on the face of the transducer. Prior to coupling 

the device to each grid point the textured membrane was sprayed with water as in Fig. 6.10 

and then the device was pressed onto the surface as in Fig. 6.11. The signal transit time was 

recorded, the membrane resprayed with water and the next grid point tested. As with 

conventional coupling the total time to test the complete grid was noted.  

For each technique the percentage difference between the measured signal transit time for 

the initial and repeat test at each grid point was calculated. For visual interpretation of 

results, this difference was plotted as a 2D surface map. The mean value of the 2D surface 

map was taken to indicate technique repeatability.
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6.4 Experimental results 

The tests results for conventional coupling and wet membrane coupling to the flat surface 

concrete block are shown in Fig. 6.12a and Fig. 6.12b respectively. For each figure, the table 

on top shows the times that make up the test duration. Below this is shown a 2 dimensional 

surface map of the test area that indicates the signal transit time measurement repeatability. 

The time taken to completely inspect the 100 point grid by conventional means took a total 

of 28 minutes. One quarter of this time was attributed to applying the viscous couplant to the 

grid and then removing it after tests. By contrast the test duration when using the wet 

membrane coupled device was a total of 25 minutes. Greater time was required to inspect the 

grid since the membranes were sprayed with water in between tests whereas the couplant 

had already been applied to the grid for conventional coupling. The difference in the test 

duration for the two techniques is marginal, but with the membrane device, the freedom 

from the inconvenience and mess of applying and removing a viscous couplant was 

appreciated. The 2D surface plots reveal that there is a much greater difference between 

measurements for the initial and repeat tests for the conventional technique. The mean 

difference between the initial and repeat test given by the repeatability was found to be 

0.9%. By contrast when using the membrane device, the repeatability improved by almost 

three fold to 0.33%. These results suggest that wet membrane coupling provides a means for 

more consistent coupling of ultrasonic transducers to concrete.  

The tests results for conventional coupling and wet membrane coupling to the rough surface 

concrete block are shown in Fig. 6.13a and Fig. 6.13b respectively. The time taken to inspect 

the grid by conventional means took a total of 37 minutes. This was an additional 9 minutes 

when compared to the time for similar tests conducted on the flat surface block. The reason 

was that this surface was borderline as to whether prior surface preparation should have been 

performed. If the measured signal transit time at a grid point varied dramatically from the 

norm then the transit time was re-evaluated. Such intuition would normally be applied by 

operators when attempting to obtain reliable results. The time taken to inspect the grid using 

the membrane device was 27 minutes. Here, for the rougher concrete surface the membrane 

device offers a 27% improvement in inspection time. Comparing the 2D surface plots with 

those in Fig. 6.12 reveals that for the rougher surface the repeatability of both techniques has 

suffered. Conventional results varied by a mean of 1.56% which is above the 1% that the 

PUNDIT operation manual recommends. For the membrane device the repeatability is 

borderline, but is still an improvement over the conventional results. 
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6.5 Conclusion 

The inconvenience of the present technique for ultrasonic inspection of concrete structures is 

caused by the requirement that a viscous coupling should be applied to each grid point. 

Application and removal of couplant proves to be messy and time consuming. As such the 

technique can often be unattractive to operators and those that specify such tests. Chapter 5 

researched the feasibility of more convenient methods for coupling ultrasonic transducers. A 

simple answer would have been to solid couple the transducers to the concrete surface using 

a comparable material. However, modelling and experiments found that solid coupling of 

transducers was not feasible for most practical applications due to the low signal 

transmission. It was suggested that when a membrane device was wetted just with water that 

the signal transmission was comparable to conventional grease coupling when testing a 

relatively rough surface. This would still be more convenient than the handling of a viscous 

couplant. To investigate further, that chapter reported on the application of models to 

develop a prototype membrane device suitable for wet membrane coupling of standard 

PUNDIT transducers. In this chapter, the performance of the device was compared to 

conventional coupling when inspecting a one hundred point grid on two different concrete 

structures. The author recognised that the greatest improvement offered by the membrane 

coupling technique was that it was definitely less messy. Unlike an organised laboratory 

environment, the handling of viscous couplant around a concrete structure is a nuisance. It is 

very difficult to keep a tidy inspection area when applying couplant to a vertical surface. It is 

thus suggested that the wetted membrane devices should prove popular among operators. 

Measured signal transit times obtained by the membrane technique were shown to be more 

repeatable than when conventional viscous coupling the transducers. This was an unexpected 

bonus since the goal was to develop a device that would offer greater convenience. The 

improved repeatability of results was due to the membrane device coupling more 

consistently to a rough surface.  

Application of research found that a wet membrane device offers a significant improvement 

over the current technique of viscous coupling transducers when ultrasonically inspecting 

concrete. The findings of Chapters 5 and 6 were conveyed at the QNDE international 

conference held in Montreal in July 1999 in the form of a presentation and poster. Prototype 

membrane shoes were exhibited and met with a warm response by interested conference 

attendees. Two papers were submitted for inclusion in the accompanying publication [Long 

et al. (1999)]. It is hoped that the findings of this work will be adopted as alternative practice 

whenever the convenience of concrete inspection, the time taken and the reliability of results 

are important. 
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Figure 6.1 General assembly of prototype membrane shoe (not to scale). 

Figure 6.2 Photograph of standard 54kHz transducer coupled to prototype membrane shoe. 
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Figure 6.3. Predicted void volume as a 
function of applied load for optimum 
membrane design applied to steel shuttered 
concrete surface. 

Figure 6.4. Predicted void volume as a 
function of applied load for optimum 
membrane design applied to timber shuttered 
concrete surface. 

Figure 6.5a. Photograph of grid pattern 
marked out on the flat surface concrete block. 

Figure 6.5b. Zoom in of flat surface concrete 
block.
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Figure 6.6a. Photograph of grid pattern 
marked out on the rough surface concrete 
block – floated surface side. 

Figure 6.6b. Zoom in of floated surface. 

Figure 6.7a. Photograph of grid pattern 
marked out on the rough surface concrete 
block – timber shuttered surface side. 

Figure 6.7b. Zoom in of timber shuttered 
surface. 
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Figure 6.8. Pundit apparatus, 54kHz transducers and prototype membrane shoes. 

Figure 6.9. Conventional coupling of transducers using Swarfega. 



 200

Figure 6.10. Film of water sprayed onto membrane shoe. 

Figure 6.11. Application of membrane device to grid point on concrete block under test. 
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Figure  6.12.  Comparison of test duration and repeatability when testing flat shuttered concrete 
block. (a) conventional viscous coupling; (b) wet membrane coupling. 
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Figure  6.13.  Comparison of test duration and repeatability when testing rough surface concrete 
block. (a) conventional viscous coupling; (b) wet membrane coupling. 



 202

Chapter 7 

Conclusions

7.1 Review of thesis 

This thesis addressed some of the limitations of current commercial ultrasonic pulse velocity 

apparatus used for the routine inspection of concrete with the intention of improving the 

technique.

Chapter 2 identified concrete as a very versatile, potentially durable, complex composite 

material. In service it is exposed to a wide variety of environments and, because of its 

physical and chemical nature, it may deteriorate as a result. Once deterioration is apparent its 

classification and extent need to be appraised so that appropriate remedial action can be 

specified. Evidence is often required to identify the extent of internal voids and crack 

systems, as a result of inadequate workmanship. The long term monitoring of changes in 

material properties, crack systems and structural performance forms a necessary part of any 

maintenance program. Several diverse techniques for inspecting concrete quality or integrity 

were identified, each with its own particular advantages and limitations, there being no 

universal panacea. It was noted that at present civil engineering has the most confidence in 

the most destructive methods of test. For a non destructive test to be accepted would 

predominately require that its results are not ambiguous, costs involved with its use are low, 

and it should be convenient and rapid to employ. Ultrasonic pulse velocity testing was found 

to be well established and favoured for testing concrete uniformity. It is recognised for its 

relative speed of inspection and low cost. Resolving the limitations of the technique would 

make the technique more attractive to users and those that specify inspection requirements. 

It is known that the measured pulse velocity varies with the path length tested for apparatus 

that uses threshold crossing to determine received signal arrivals. When the absolute value of 

the velocity in concrete is required, this anomaly can become significant. In Chapter 3 the 

factors that contribute to this anomaly were investigated. Signal losses due to beam 

spreading were predicted along with an experimental investigation to obtain functions that 

describe signal attenuation due to material properties. Commercial transducer and excitation 

characteristics were explored to model the pulse emitted from a transducer. From these 

studies the extent for the anomaly when testing various concrete mixes was predicted and a 

function has been derived to correct measurement errors.  
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Absolute values of measured pulse velocity are dependent on the reliability of the adopted 

technique used for calibrating the apparatus which is not so straight forward as it may seem. 

Calibration is achieved by coupling the transducers to a bar and setting the apparatus display 

to a time value stamped on the bar so as to remove the inherent time delay in the apparatus 

circuitry. The calibrated time value coincides with the time that a longitudinal bulk wave 

would take to propagate the length of the bar. However, being bounded the bar acts as a 

wave guide and so propagation of bulk waves cannot be assumed. To investigate this, 

chapter 4 reported on a finite element study that was carried out on wave propagation in a 

finite length of bar. To aid interpretation of data, an investigation of signal-processing 

techniques that were suitable for the evaluation of wave velocities in dispersive systems was 

carried out. A comparison of the techniques is presented in Appendix 1. 

Commercial ultrasonic apparatus is predominately limited by the requirement that a viscous 

couplant should be applied between the transducer face and the surface under test so as to 

facilitate signal transmission. For an alternative, the solid coupling of transducers using a 

soft rubber was investigated in chapter 5. The topology of a range of concrete surfaces was 

surveyed. For rubber contact with such surfaces the characteristics of ultrasonic transmission 

across a low load interface was investigated experimentally. Numerical contact models were 

derived to predict the true contact area as a function of applied load that an axi symmetric 

body makes when pressed onto a real rough surface and thereby predict signal transmission. 

Such models enabled the design optimisation of a solid coupling device. A simple-to-

program solution technique was developed to solve the contact model equations. Model 

predictions were validated against classical analytical solutions and experimental 

verifications. The performance of dry rubber coupling transducers to concrete was evaluated 

by employing a combination of experimental results and model predictions. Additionally the 

option of wetting a rubber membrane coupled device just with water was investigated, which 

still avoided the inconvenience of conventional viscous coupling.  

The application of wet membrane coupling of transducers was discussed in chapter 6. 

Prototype membrane shoes to fit to standard commercial transducers were designed and 

optimised using the derived contact models. A comparison with conventional viscous 

coupling was conducted for the inspection of a 100 point grid on two different concrete 

blocks. The performance of a technique was gauged by the repeatability of results, the time 

to inspect the grid and time to prepare for and clean up after inspection. 
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7.2 Summary of findings 

7.2.1  Correction of measured pulse velocity 

The anomaly that measured pulse velocity varies with path length tested was attributed to the 

threshold crossing method employed by commercial apparatus to recognise the arrival of the 

received signal. As the signal amplitude decays with distance propagated due to beam 

spreading and material attenuation, the threshold was shown to cross by a later phase of the 

received signal.  

Commercial transducers used for through transmission pulse velocity testing of concrete 

excite signal wavelengths greater than the diameter of the transducer which result in these 

transducers acting as a point source. Losses due to beam spreading can then be 

approximately as being inversely proportional to distance propagated.  

The attenuation coefficient  for mortar and 5mm & 10mm aggregate concrete was 

experimentally determined. For wavelengths greater than 3 times aggregate size, the 

coefficient of attenuation for concrete was shown to be approximately a linear function of 

frequency.   

The effect of the PUNDIT apparatus exponentially decaying excitation pulse applied to 

commercial narrow band transducers was investigated. The outcome was a near doubling of 

the expected period at the centre frequency of the first half cycle of the emitted signal and an 

approximate 90o phase shift on the trailing part.  

With these three findings in mind simple functions were derived to predict the modification 

of pulse shape with distance propagated in a concrete with a given aggregate size and 

thereby predict the variation in measured signal transit times. Predictions were shown to 

agree with the extent of the anomaly given by Bungey and Millard [1996] that a typical 

reduction in the measured velocity of 5% for path lengths between 3m to 6m can be 

expected. A function was derived to correct the apparatus displayed signal transit time, 

which would require monitoring of the amplitude of the received signal first half cycle 

which current standard equipment does not have the capacity for.  

When the absolute value of pulse velocity in concrete is required, it is recommended that the 

correction function suggested in this thesis be adopted.  
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7.2.2  Evaluation of calibration procedure 

Signal processing techniques suitable for the analysis of dispersive signals were explored. 

The phase spectrum method enabled determination of phase and group velocities as long as 

the signal was compactly supported within the sampled time window and the signal to noise 

ratio was above 2:1. The wavelet transform was found to be particularly valuable for the 

analysis of noisy signals or those that contain multiple dispersive modes. A technique was 

developed by the author around the wavelet transform to extract group velocity. 

The phase velocity was extracted from axi symmetric finite element model results by the 

phase spectrum technique. It was found that no mode propagates with significant energy 

above the fundamental bar velocity in a finite length of bar unless some restriction is 

imposed on lateral displacements. Analysis of finite element and experimental results by the 

wavelet transform technique found that most of the energy of the propagating wave in the 

finite length calibration bar travels at guided wave velocities. A low energy level component 

was observed propagating at the bulk velocity when analysing the magnitude of 

experimental and finite element signals in the time domain. In practice, providing the 

transducers are effectively coupled to the reference bar, this component will be of sufficient 

magnitude to trigger the threshold in advance of slower higher amplitude guided waves. 

This thesis recommends that when absolute values of pulse velocity are required, care should 

be taken to effectively couple the transducers to the reference bar so that the apparatus will 

trigger off the faster low level energy component travelling at the bulk velocity. If 

performing a comparative study where the path length is relatively constant, absolute values 

are not important. For this case, it is recommended that calibration of equipment is not 

necessary and neither is any correction for path length measured. 

7.2.3  Convenient coupling of transducers 

Solid coupling of transducers was investigated as an alternative to conventional grease 

coupling. For a rubber rough surface interface where only about 10% or less contact is made, 

it was found that transmission was only a weak function of frequency, which contradicted 

the established quasi static model. Additionally it was found that the transmission was 

approximately proportional to the load applied to the interface. From this study a 

relationship between signal transmission and true contact area was argued.  
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Axi symmetric models were derived as opposed to full 3D models which were found to take 

a considerable solution time, and established line contact models which are more suitable for 

the modelling of contact between parallel rollers. A simple-to-program iteration technique 

was developed, which though crude was shown to adequately solve contact model equations. 

The performance of solid coupling was taken to be represented by the fractional 

transmission, given as the ratio of the transmission for an imperfect interface over that for a 

perfect interface. Experimental results took the fractional transmission to equal the 

transmission for rubber contact over grease coupling. Model predictions took the fractional 

transmission to equal the predicted true area of contact over the transducer diameter. With 

this in mind solid contact model predictions were shown to agree very favourably with 

experimental results. This validates the models, as well as the argument that for fractional 

contact areas of about 10% or less the transmission across the interface is proportional to 

true area of contact. The membrane contact model was derived for which no similar 

numerical model is known. The derivation was not so straight forward as for solid body 

models, requiring some empirical data for calibration of the model. However, membrane 

model predictions were shown to adequately predict the range of signal transmission that 

might arise from a given design. 

For a hand held device, the transmission across a dry coupled low load rubber disc interface 

was shown not to be sufficiently strong for most practical applications. Membrane coupling 

was shown to conform better to rough surfaces so as to offer up to 6dB increase in 

transmission by such devices. As an alternative to dry coupling, the option of wetting a 

membrane device with very little water was researched. Initial trials found that signal 

transmission for wet membrane coupling was comparable and more consistent than 

conventional viscous coupling of transducers. 

Prototype membrane shoes were designed with the aid of the membrane contact model 

which was used to optimise the design such that only a smear of water need be applied to the 

membrane to adequately acoustically couple the device. A comparison with conventional 

viscous coupling was conducted for the inspection of a 100 point grid on two different 

concrete blocks. The performance of a technique was gauged by the repeatability of results, 

the time to inspect the grid, and time to prepare for and clean up after inspection. It was 

found that wet membrane coupling of transducers was more convenient, less messy and 

offered improved repeatability of results. It is thus recommended by this thesis that wet 

membrane coupling of transducers should be adopted as standard practice whenever an 

ultrasonic study of the uniformity of a concrete structure is carried out.
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7.3  Recommended future work 

7.3.1  Correction of measured pulse velocity 

For the proposed correction functions to be adopted would require experimental data to 

confirm their acceptance. Such a task is not trivial, requiring a range of concrete blocks to be 

fabricated. For a range of blocks with different path lengths, the consistency of a given mix 

should not vary too greatly so as not to affect results.  

7.3.2  Verification of calibration technique 

Axi symmetric finite element models found that no mode propagates with significant energy 

above the fundamental bar velocity in a finite length of bar unless some restriction is 

imposed on lateral displacements. It would be worth investigating the more involved full 3D 

model to verify if this is still the case. This investigation is of use when addressing the topic, 

when is a bar a bar, or, at what length can a bar be considered long enough such that only the 

propagation of guided waves need be presumed. This study made no recommendations here, 

which leaves scope for future work.  

7.3.3  Contact models 

The solid body, axi-symmetric contact model derived in this thesis has a wide range of uses. 

Scope for its improvement would centre on speeding up the convergence of the iterative 

solution. The membrane contact model is perhaps limited by the requirement of empirical 

functions for its calibration. However, its use is not seen to be as popular as modelling of 

solid body contact and so the necessity for its improvement seems unlikely.  

7.3.4  Convenient coupling of transducers 

It is proposed that the design of alternative coupled devices for inspecting concrete has been 

effectively addressed in this thesis. Future work would centre on getting the technique to be 

included in recommendations BS 1881 published by the British Standards Institute. 
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Appendix 1 

Signal processing for dispersive systems 

A1.1 Introduction

This appendix describes in greater detail the signal processing techniques used by the author 

to extract wave velocities from the dispersive signals encountered in chapter 4. A dispersive 

system is where the phase velocity of a wave is a function of frequency. For a finite duration 

signal that comprises a range of frequency components the effect leads to distortion of the 

wave packet as it propagates. An established technique for extracting phase velocity is the 

phase spectrum method. Two techniques developed by the author are based on the Hilbert 

and the Wavelet transform for the extraction of group velocity. Individually the established 

and developed techniques all suffer from various limitations. However, their combination 

improves the analysis. The appendix first describes a set of simulated dispersive signals that 

each technique will be validated against. The established phase spectrum technique is then 

described followed by the derivation of the author’s techniques.   

A1.2 Simulated dispersive signals 

A set of simulated dispersive signals was obtained from the finite element model discussed 

in section 4.4. For this application the model simulates wave propagation in a 50mm 

diameter 2m long aluminium bar by approximating the bar as an axi-symmetric finite 

element mesh. Being axi-symmetric the model does not simulate the propagation of flexural 

(non axi-symmetric) modes, which provides a useful simplification. The phase velocities for 

longitudinal wave propagation in an infinitely long bar can be described by the classical 

solutions given in section 4.3. Validation of the signal processing techniques described in 

this appendix will be conducted by comparing their extracted wave velocities to classical 

solutions. The extraction of wave velocities requires two signals that are related to each 

other. Here a signal u(t) will represent the input axial displacements applied to one end of 

the bar and signal v(t) the monitored axial displacements at some point along the length of 

the bar. Chirp signals will be used for the input which have the property that the 

instantaneous frequency increases as a function time t. For a linear chirp a carrier signal uc

(t) of duration T with a centre frequency fc can be described by the following function 
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tftu cc 2sin       A1.1 

where the time variable  can be given as 

N

n

T

t

k

tf c       A1.2 

where k is the number of cycles completed within the duration T for Nton 0 discrete 

points. The time trace and modulus of the FFT (Fast Fourier Transform) of a carrier signal 

given by equation A1.1 are shown in Fig A1.1 and Fig A1.2 respectively. Here the 

amplitude modulation of equation A1.1 can be considered to be a rectangular window of 

duration T. Such a window will possess numerous spectral maxima which does not make for 

a smooth function in the frequency domain as seen in Fig A1.2. The frequency spectrum can 

be improved when the carrier uc(t)  is amplitude modulated by a function such as a Hanning 

window uH(t), which is characterised by a smooth decay to zero amplitude, and is given by 

T

t
tuH 2cos15.0      A1.3 

The product of the carrier signal given by equation A1.1 and the amplitude modulation given 

by equation A1.3 provides the desired input signal u(t), which can be given as 

tutuAtu Hc)(       A1.4 

where A is a constant. The time trace and smooth frequency spectrum of a Hanning 

windowed linear chirp input signal are shown in Fig A1.3 and Fig A1.4 respectively. Such 

signals possess good low frequency content and are fairly broad band yet of relatively long 

duration (high time bandwidth product) which are ideal properties for signal processing.  

Fig. A1.5 through to Fig. A1.16 show details of the three types of simulated signals that 

were constructed for the validation of the signal processing techniques. They are 

characterised by: 

1) The bandwidth of the input signal at the bar end as shown in Fig. A1.5 and Fig. A1.6 is 

limited so as to predominately excite the fundamental L(0,1) mode. The early part of the 

monitored signal at 500mm from the bar end as shown in Fig. A1.7 and Fig. A1.8 will 
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then comprise solely the faster L(0,1) mode with the later portion a superposition of this 

and a number of slower modes. This was achieved by setting the centre frequency fc of 

the input chirp signal to 40kHz; 

2) Both signals the same as type (1) but with non-coherent noise added to both input and 

output as shown in Fig. A1.9 through to Fig. A1.12. This would simulate real life 

signals. Noise as is shown in Fig. A1.13, was provided by the function described in 

section 5.3.1 that forces a Gaussian distribution from a set of random data. Noise 

amplitude was set such that in the 20kHz to 60kHz frequency range the signal to noise 

ratio would be greater than 2:1 which is evident by comparing the FFT of the noise 

shown in Fig. A1.14 with the monitored signal FFT shown in Fig. A1.8. 

3) Input same as type (1), but output being the superposition of  the signal monitored at 

250mm and the signal monitored at 750mm multiplied by –2 to simulate the presence of 

a reflection in the output as shown in Fig. A1.15 and Fig. A1.16. 

A1.3 Phase spectrum by the Fourier transform 

The established phase spectrum approach evaluates the phase velocity of a wave from the 

difference in the phase spectra of two signals obtained from different points along the 

passage of the wave. These two signals should be separated in time to allow evaluation of 

their individual phase spectra. If this is not the case then the alternative amplitude spectrum 

method [Pialucha et al (1989)] will provide discrete points on the dispersion curve. The 

technique is based around the Fourier transform and so assumes a signal to be periodic. As 

such the magnitude of the signal to be processed should decay away sufficiently rapidly 

(compact support) within the duration of the time window otherwise leakage of frequency 

components occurs. Another limitation of the technique is that only one wave packet should 

be present in the time signals. The phase spectrum of multiple wave packets will overlap and 

confuse  the analysis. The phase spectrum method is briefly described here following a 

similar approach to Sachse and Pao [1978]. Consider a disturbance of finite duration that is 

generated at the location z=0, where the displacements for time t  0 can be written as 

tftu ,0        A1.5 

The Fourier transform of this disturbance can be written as 

FU ,0        A1.6 
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The complex Fourier transform can be separated into its real and imaginary parts F1 and F2

respectively. The absolute value is then given as 

2/12
2

2
1 FFF       A1.7 

such that the Fourier transform can be written in terms of 

0exp iFF      A1.8 

where the phase spectrum ( ) is given as 

21
1 /tan FF      A1.9 

If the pulse propagates a distance z then the Fourier transform of the u(z,t) is given as 

zizFzU expexp,    A1.10 

where  is an attenuation parameter and  the wave number, both being functions of the 

frequency . Substituting equation A1.8 into equation A1.10 gives 

0expexp, zizFzU   A1.11 

which gives the phase spectrum of the propagated pulse ( )z as 

0zz       A1.12 

which in terms of the wave number ( ) can be written as 

z

z 0       A1.13 

Substituting equation A1.13 into equation 4.40 gives the phase velocity as 

0z

ph

z
v       A1.14 
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Alternatively we could consider the input to be described by the function u(t) and the system 

the signal propagates in being characterised by the impulse response h(t). The output signal 

v(t) will then be the convolution of u(t) with h(t), thus 

)()()( thtutv       A1.15 

By the convolution theorem it follows that 

)()()( HUV       A1.16 

where H( ) is the Fourier transform of h(t). The frequency response function of the system 

is then obtained by 

)(

)(
)(

U

V
H        A1.17 

Multiplying top and bottom of the RHS by the complex conjugate of U( ) which is written 

as U*( ) we get 

)()(

)()(
)(

UU

UV
H       A1.18 

which simplifies to 

)(
)(

1
)(

2 UVG
U

H      A1.19 

where the cross spectrum GUV( ) is obtained from the individual Fourier spectra of the input 

and output given as 

)()( UVGUV       A1.20 

The phase of the cross spectrum in equation A1.20 gives the phase difference between the 

input and output as a function of frequency which can be written as 
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real

imag
GUV arctan)()(     A1.21 

As an example the technique will now be applied to the straight forward case given by the 

simulated input and output signals shown in Fig. A1.5 and A1.7 respectively. If the output 

v(t) had been reflected off a boundary at normal incidence the 180o phase difference could 

be corrected by multiplying the function by –1. Additionally, for real signals care should be 

taken when chopping or filtering signals in the time or frequency domain so as not to affect 

the phase spectrum. The technique for obtaining the phase velocity begins by first 

computing the FFT (Fast Fourier Transform) of u(t) and v(t). The phase difference ( ) can 

then be computed from the phase of the cross spectrum. The computed phase spectrum ( )

will be a discontinuous function with values that vary from 0 to 2  (depends on the 

argument used for the arctan computation) as shown in Fig A1.17 which must be 

transformed into a continuous function. At the point where the first discontinuity occurs and 

up to the second discontinuity 2  is then added to the function ( ). From the second to the 

third discontinuity 4  is added to ( ), and so on. The assembled continuous phase spectrum 

is shown in Fig A1.18. If a signal has little energy at certain frequencies, care should be 

taken in this region when assembling the continuous function, otherwise it is likely that the 

correction may be overlooked or 2  may well be unnecessarily added to the function. If 

there is an error in the continuous function at some frequency all subsequent phase values at 

higher frequencies will be subsequently affected. Referring to equation A1.14, the effect of 

such an error is reduced when 2)( . This occurs when the product of propagation 

distance and frequency is large for which there are a relatively greater number of phase 

reversals. From the continuous phase spectra the phase velocity is then obtained by equation 

A1.14. From the phase velocity, the group velocity is obtained by equation 4.41 where the 

derivative can be solved by first fitting cubic splines to the phase velocity function, and then 

finding the differential of the splines.  

The phase and group velocity curves that results from signals u(t) and v(t) are shown in Fig. 

A1.19 and fig. A1.20 respectively along with the relevant dispersion curves for the first three 

longitudinal modes evaluated by Disperse [Pavlakovic et al (1997)]. From zero to 

frequencies up to about 60kHz the extracted phase velocity agrees with the dispersion curve 

for the L(0,1) mode as shown in Fig. A1.19. The linear chirp signal proves to be an ideal 

signal for such a signal processing technique due to adequate energy at low frequencies and 

the smooth frequency spectrum. Above about 60kHz the extracted phase velocity becomes a 

cruder approximation. One reason for this that there was relatively little energy in the input 
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signal above 60kHz such that the results become increasingly unreliable. Additionally above 

the mode cut off frequencies of about 74kHz and 88kHz the input has also excited the L(0,2) 

and L(0,3) modes respectively. Since the signals represent axial displacements in the bar, at 

a given frequency above 74kHz the analysis will be dominated by which ever mode has the 

greatest axial displacements. This effect can be seen more clearly in the extracted group 

velocity shown in Fig. A1.20 which clearly shows up the existence of the first three 

longitudinal modes. 

We now need to assess the technique for evaluation of phase velocity against the more 

demanding simulated signals. To simulate real life signals some noise was added to the input 

and output as shown in Fig. A1.9 through to Fig. A1.12. The extracted phase velocity for 

these signals is shown in Fig A1.21. Within the 20kHz to 60kHz frequency range the 

function adequately agrees with the L(0,1) mode. Outside this frequency range the extracted 

phase velocity becomes increasingly unreliable as the signal to noise falls below a ratio of 

2:1. This is of particularly evident in the low frequency region where with reference to 

equation A1.14, errors in the continuous phase function have the greatest effect on the 

extracted phase velocity. The effect of errors that do occur in this region reduces further 

upstream as 2)( . For such noisy signals, to acquire the group velocity would 

necessitate some smoothing of the extracted phase velocity function before its differential 

could be determined. Without having gone into too much mathematical rigour, it would 

appear that the phase spectrum method should be able to extract phase velocities from a set 

of signals over the frequency range where the signal to noise ratio is better than 2:1.  

The final set of signals simulates the presence of a reflection in the output signal. This was 

obtained by dividing the monitored signal at 750mm by –2 and superimposing it on the 

signal monitored at 250mm form the bar end. It could also be considered that this simulates 

a signal with a signal to noise ratio of 2:1. The extracted phase velocity shown in Fig A1.22 

is confused due to the overlapping of the spectra of the two wave packets present in the 

output signal. It would be impractical to determine the group velocity from such a function 

due to its oscillatory nature. The mean of the function follows the profile of the L(0,1) mode 

due to the dominance of the monitored signal at 250mm, which is twice the magnitude of the 

reflection. Thus it appears that over the frequency range where a signal is a superposition of 

a number of modes or wave packets the phase spectrum method is unlikely to provide any 

meaningful results unless the magnitude of the frequency components for one wave packet 

are at least twice that of any other. 
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A1.3 Instantaneous frequency by the Hilbert Transform 

Audoin and Roux [1996] have estimated the time delay between two signals that 

corresponds to the asymptotic low frequency value by employing the Hilbert transform. The 

following section describes a technique developed by the author that uses the Hilbert 

transform to obtain the instantaneous frequencies from two related signals to enable 

extraction of group velocity. In the state of development presented the technique is limited to 

the analysis of signals for which the instantaneous frequency either continually rises or falls, 

such as is the case with linear chirp type signals.  Since the introduction of the notion of the 

analytic signal [Ville (1948)] the Hilbert transform has been widely used in signal 

processing. The application of the Hilbert transform on normal real valued time signals 

enables them to be expressed as complex functions. This yields two useful properties, being 

the signal envelope and the instantaneous frequency, where the latter will enable the 

extraction of wave group velocity. To describe the technique, we begin by developing the 

analytic signal by following a similar approach to Randall [1987]. Consider a causal time 

signal where 

0tu , 0t        A1.22 

meaning that there can be no output before the input is applied at time zero. The Fourier 

transform of this signal will comprise real and imaginary components 

fiUfUfUtuF IR     A1.23 

The Hilbert transform expresses the relationship between the real and imaginary parts of the 

Fourier transform by 

f
fUfU IR

1
      A1.24 

where the * represents a convolution. The Hilbert transform of a general frequency function 

G(f) in the familiar form of the convolution integral can be written as 

d
f

GfGfG
11~

    A1.25 
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where the Hilbert transform is in the same domain as the original function. The Hilbert 

transform of a time function u(t) is thus defined in the same way and is given as 

d
t

ututu
11~     A1.26 

or similar to equation A1.24 can be written as 

t
tutu

11
      A1.27 

Here the sign function becomes useful where 

01

01
sgn

t

t
t

which has the Fourier transform of 

fi
tF

1
sgn        A1.28 

Recognising that a convolution in the time domain equates to a multiplication in the 

frequency domain results in 

fifUtuF sgn~      A1.29 

Hence the Hilbert transform of a time function can be obtained by multiplying positive 

frequency components by -i (a phase shift of –90o) and negative frequency components by + 

i (+90o). In the same manner as the relationship between real and imaginary frequency 

components was given in equation A1.24, we can apply the Hilbert transform to a real time 

signal to obtain a corresponding imaginary part. A complex time signal whose imaginary 

part is the Hilbert transform of the real part is known as an analytic signal given as 

tuitutu ~       A1.30 
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Similar to equation A1.8 the analytic signal can be written in terms of modulus and phase as 

tietutu        A1.31 

where the envelope is obtained by 

tututu 22 ~       A1.32 

and (t) is the instantaneous phase given by 

tutut /~tan 1       A1.33 

The rate of change of phase gives the instantaneous frequency, which in Hz is given by 

dt

td
tf i

2

1
      A1.34 

For a sinusoidal wave, equation A1.34 coincides with the frequency. However, the 

instantaneous frequency of the sum of two ordinary waves is the average of their 

frequencies. Therefore the technique does not give the desired results for relatively noisy 

signals or where more than one signal or mode is propagating simultaneously. Additionally, 

the analytic signal is only simply applicable when the carrier frequency of a signal is greater 

than the highest frequency of the amplitude modulating window function [Randall (1987)]. 

This requires that the window function should be smooth so that higher frequency 

components decay rapidly. Also, since they are not oscillatory, window functions will have a 

predominant DC component, such that the carrier signal should not have comparable energy 

in this region. Fortunately, this is the case for the majority of ultrasonic signals encountered.  

Equation A1.34 has similarities to equation 4.41, which gave the author the notion of using 

the instantaneous frequencies of a signal to extract the group velocity of a wave. As with the 

phase spectrum method, two signals u(t) and v(t) along the passage of the wave are required 

for the evaluation of group velocity. To enable individual processing, the signals should be 

separated in time if on the same time trace. A major limitation of the technique is that in 

order to compute the group velocity the signals should have the property that their 
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instantaneous frequencies increase with some function of time. Linear chirp signals given by 

equations A1.1 through to equation A1.4 were used which have the property that their 

instantaneous phase is a square function of time, and thus the derivative and hence 

instantaneous frequency is a linear function of time.  

The technique will now be applied to the input u(t) and output v(t) signals shown in Fig. 

A1.5 and A1.7 respectively. The Hilbert transforms of signals u(t) and v(t) as obtained by 

equation A1.26 are shown in Fig. A1.23 and A1.24 respectively. The instantaneous phase of 

each signal is then computed by equation A1.33. The phase will be a discontinuous function 

with values that vary from 0 to 2  (depends on argument used for arctan computation) which 

must be transformed into a continuous function. This can be achieved in the same manner as 

was adopted for the phase spectrum technique described in the previous section. The 

continuous instantaneous phase of the input and output signal are shown in Fig. A1.25 and 

A1.26 respectively. From these functions the instantaneous frequency fi(t) for each signal is 

then determined by equation A1.34 where the derivative can be obtained numerically by the 

use of finite differences. The instantaneous frequencies fi{u(t)} and fi{v(t)}for the input and 

output signals are shown in Fig. A1.27 and A1.28 respectively. For a value of frequency f on 

the input fi{u(t)} curve the time delay dtf to a similar point on output fi{v(t)} curve is then 

found as shown in Fig. A1. 29. Time delay measurement is straight forward so long as the 

instantaneous frequency increases or decreases continuously as a function of time. An 

illustration of the importance of this can be seen in Fig. A1.29, where beyond 0.2ms the 

instantaneous frequency becomes some kind of oscillatory function such that time delay 

measurement becomes unreliable. The group velocity vgr(f) as a function of frequency f is 

then obtained by 

fdtzfvgr /        A1.35 

The group velocity curve extracted from signals u(t) and v(t) is shown in Fig. A1.30 along 

with the relevant dispersion curve for the L(0,1) mode evaluated by Disperse. Notice that at 

lowest frequencies the technique displays higher group velocities than the dispersion curve 

suggests. This is a typical artefact of the technique that occurs where there is some 

overlapping of the frequency spectra of the carrier and window functions that makes the 

analytic signal unreliable in this region. The irregularity beyond 40kHz frequencies is due to 

components of the L(0,2) or L(0,3) modes propagating faster than L(0,1) components which 

interferes with the analysis. Thus other than the trivial case of constant phase velocity, the 
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technique is only valid in a region where phase velocity continually falls or rises as a 

function of frequency. 

Application of the technique to the noisy input and output signals shown in Fig. A1.9 

through to Fig. A1.12 is not practical. For these signals the noise becomes so amplified in 

the instantaneous frequencies that evaluation of the time delay becomes unreliable. Thus the 

technique requires better than 2:1 signal to noise ratios. Finally the technique was employed 

on the output signal with the simulated presence of a reflection which is shown in Fig. A1.15 

through to Fig. A1.16. The extracted group velocity is shown in Fig. A1.31 which should be 

compared with the one in Fig A1.30. For frequencies up to about 40kHz the extracted group 

velocities agree. The point in the signal shown in Fig. A1.15 where the simulated reflection 

was added corresponds to an instantaneous frequency of about 40kHz. The effect is that the 

extracted group velocity is confused for frequencies beyond 40kHz due to the overlapping of 

the two signals. Thus the presence of a reflection does not unduly affect the analysis over the 

portion of the signal where only the outgoing wave packet is present. 

To be of some practical use the developed Hilbert transform technique would require the 

inclusion of some form of filtering in order to reduce undesirable effects when signals 

include significant noise, more than one mode or additional wave packets. The notion of 

evaluating group velocities by determining signal instantaneous frequencies was believed to 

be useful, such that the following section describes further development where the concept is 

applied to the wavelet transform. 

A1.4 Ridge points by the wavelet Transform 

The previous two signal processing techniques described are both susceptible to noise and 

are affected when multiple modes or reflections are superimposed on the same time trace. As 

an alternative a technique employing the WT was developed by the author to extract group 

velocity in a manner similar to the Hilbert transform technique which was described in the 

previous section. The wavelet transform (WT) discussed here will prove to be much less 

sensitive to noise and allow the investigation of complicated time signals. The concept of the 

WT was formalised in a series of papers by Morlet et al [1982]. Since the introduction a 

seemingly exponential yearly increase in papers on the subject have been published on all 

manner of diverse uses. Mathematically, significant work has been conducted [Meyer 

(1990)], [Mallet (1989)], [Daubechies (1988)] and [Chui (1992)]. Useful descriptions on the 

application to NDT and signal processing can often be found in related conference 
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proceedings and journals [Abbate et al (1999)] and [Moubarik et al (1993)] for example. It 

was found that [P. Kumar and E. Foufoula-Geogiou (1994)] gave a clear informative 

introduction before applying the technique to various geophysical data. Here the technique 

will be described without too much mathematical rigour in an attempt to convey its 

usefulness to NDT signal processing. 

The original motive for the development of the WT [Goupillard et al (1984)] was to be able 

to transform a time signal and display the transform in such a manner that the contributions 

of different frequency bands could be analysed separately from each other. The 

representation is commonly known as time frequency analysis, where a one-dimensional 

time signal is mapped into two dimensions of time and frequency. This is not possible with 

the Fourier transform, where it is possible to go back and forth between frequency or time 

domains but never have information about the signal simultaneously in both domains. 

However, frequency-time analysis is not ideal since the uncertainty principle [Mallet 1989] 

states that arbitrarily high precision in both time and frequency cannot be achieved. Other 

time frequency representations for NDT applications like the short time Fourier (STFT) 

transform [Onsay and Haddow (1993)] and the Wigner-ville (WV) transform [Moubarik et 

al (1993)] have been compared to the WT. The WT is shown to be well adapted to 

localisation in time and frequency unlike the Fourier technique. The WV transform is not 

limited by the frequency time location, however, Prosser and Seale [1999] state that this 

advantage comes at the expense of computational complexity and the appearance of cross 

terms if the signal contains multiple frequency components that make interpretation of 

results very difficult.

Like the Fourier transform, the WT approximates a signal by a superposition of functions. 

Joseph Fourier discovered in the early 1800s that any periodic function can be expressed as 

an infinite sum of periodic complex exponential functions. The Fourier transform of a 

function v(t), given as 

dtetvV ti       A1.36 

is a decomposition of the signal into complex exponential functions of different frequencies. 

The signal v(t) is multiplied by an exponential term at some frequency  and integrated over 

all time. If the result of this integration is high at a particular value of  then the signal can 

be said to have a dominant spectral component of frequency . Since the integration is over 

all time, no matter where in time the component with a frequency  appears, it will have the 
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same effect on the integration. Thus the Fourier transform evaluates the existence of a 

certain frequency but not where it is located in time. It follows then that if we want to locate 

features in time then the bulk of the integration should occur over a finite duration. To locate 

in time, wavelet functions (t) have a tapering or window operation so that they decay 

sufficiently fast, which is known as the property of compact support. Location in frequency 

will be provided by the oscillatory nature of (t) which to be an analysing wavelet must 

satisfy the admissibility condition that 

0dtt        A1.37 

Compact support and zero mean are just two characteristics of wavelets that can be satisfied 

by a whole myriad of functions. Having chosen an analysing wavelet  with its own 

properties we can create a whole family of related wavelets  a,b that are translated (b) and 

scaled (a) versions of  by 

a

bt

a
tba

1
,       A1.38 

The normalisation a/1 is chosen such that  

1
22

, dttdttba              A1.39 

for all scales a where tt 0,1 , which implies that the wavelets have the same unit 

energy.

The continuous wavelet transform CWT of a function v(t) is then given by the integral 

transform

db
a

bt

a
tvdtttvbavW ba

1
, ,      A1.40 

Strictly speaking equation A1.40 describes the mapping of v(t) in terms of time scale 

representation. Scale will be shown to be related to frequency when we come to describing 

the computation of the CWT. Equation A1.40 describes the inner product of v(t) with  a,b(t)

or in other words the CWT evaluates the similarity between the wavelet and the signal, 
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where the similarity is the frequency content. Thus the CWT coefficients refer to the 

closeness of the signal to the wavelet at the current scale. The inverse wavelet transform 

involves a two dimensional integration over scale a and translation b and is given by 

dbtbavW
a

da
C

tv ba,2
,

11
             A1.41 

where the admissibility constant C  depends on the choice of wavelet and is given by 

dC

2
ˆ

               A1.42 

The CWT is also an energy preserving transformation (a type of Parseval’s relationship for 

wavelets) that is 

0

2

2

2
,

11
dadbbavW

aC
tv         A1.43 

In reality, for the analysis of sampled signals a discrete set of dilations and translations are 

considered that describe the discrete wavelet transform DWT. Choosing maa 0  and 

manbb 00  with a0>1 with m,n as integers, generates from equation A1.38 a family of 

wavelets given by 

00
2/

0, nbtaat mm
nm         A1.44 

The exact reconstruction of v(t) from its WT is affected if discrete sequences are used since 

the inversion equation A1.41 is derived for continuous functions. Daubechies [1988] has 

shown that by setting a0=2 and b0=1, a set of orthonormal wavelets are constructed, (where 

the inner product of two different wavelets is zero and their integrals as in equation A1.39 

are unity), which have excellent inversion properties. The integer m can then be thought of 

as an octave multiplier which results in a sparse set of orthogonal wavelets (where the inner 

product of two different wavelets is zero) with no redundancy. This would be ideal for the 

analysis of broad band signals such as those obtained in laser ultrasonics, however most 

ultrasonic signals rarely have frequency components occurring over more than a few 

octaves. As such the DWT with a dyadic basis (2m) would generally provide too coarse a 
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representation for the recognition of NDT type features. A more appropriate representation 

can be achieved using suboctave divisions in the dyadic grid [Onsay and Haddow (1993)]. 

This results in a ideal dense time scale representation that aids interpretation of  the WT at 

the expense of a lot of redundancy. Not being concerned about redundancy allows the use of 

Gaussian window functions, which are not orthonormal, but offer ideal time frequency 

localisation [Chui (1992)] and allow simple conversion from scale to frequency parameters. 

The Morlet wavelet is a Gaussian type function, which is defined by  

24/2

2

2
0

2

0 21
tt

ti
eeeCet        A1.45 

where C is a constant to satisfy equation A1.39. The Fourier transform of equation A1.45 is 

given by 

4/4/2/ 2
00

2
0 eee        A1.46 

It is usual to have the unscaled centre frequency 0 greater than

)2(85.0
2ln

2
0  rads/s       A1.47 

which results in 32
0 10)4/exp( , so that the second term in equation A1.46 can be 

neglected, such that equation A1.45 can be approximated by 

24/1

2

0

t

ti
eet       A1.48 

If 0<5 rads/s then wavelets described by equation A1.48 have a significant DC component.  

Most texts give equation A1.48 for the Morlet wavelet, where for their application signal 

reconstruction is not an issue. It was found useful to be able to have the option of 0<5

rads/s, which means that the desired filtering techniques would require the inversion process, 

thus equation A1.45 was used for this work. Equation A1.45 or equation A1.48 describe a 

complex wavelet (t) possessing real and imaginary functions. A complex Morlet wavelet 

centred at time b = 0 is illustrated in Fig. A1.32 for an unscaled centre frequency 0=5

rads/s. From such a wavelet, a family of scaled and translated wavelets are obtained by 

applying equation A1.45 to equation A1.38. For a real Morlet wavelet where 0=3 rads/s, 
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scaled versions with zero translation for the octave multiples a =1, 0.5 and 0.25 are shown in 

the time domain in Fig. A1.33 with their Fourier transforms shown in Fig. A1.34. For a 

decrease in scale as seen in Fig. A1.33 the wavelet duration decreases, and the centre 

frequency and bandwidth of the wavelet increases as shown in Fig A1.34. This is the 

essential feature of the WT that is often highlighted at the start of most texts. That is that the 

WT is able to zoom in to analyse short duration features and zoom out to look at long 

duration features. The wavelet transform in this work will be displayed in frequency time, 

where the frequency plane is divided into equal intervals. This allows a more familiar 

representation than would be obtained in scale time where every scale or octave is 

subdivided by a constant number of suboctaves. We thus need to convert the scale parameter 

to its equivalent frequency. For the Morlet wavelet this is straight forward since the unscaled 

centre frequency of (t) is 0=2 f0 rads/s, thus when scaled by a the centre frequency a is 

given as 

a
a

0           A1.49 

This illustrates the constant Q nature of the CWT, where Q is related to the band width BW

of a signal divided by the centre frequency 0 and so is given by 

0

0
BW

Q           A1.50 

To obtain a desired family of wavelets,  practically we would choose a range bounded by a 

maximum fmax (respecting Nyquist sampling theory) and minimum frequency fmin (respecting 

the wavelet duration) with which to analyse a signal. For a total N equi spaced frequencies, 

the corresponding scale at the nth frequency is given by  

1
1

minmax
min

0

n
N

ff
f

f
an     A1.51 

At this point it will be useful to mention that if we had a family of wavelets that had constant 

bandwidth instead of constant Q then the CWT can be used to compute the STFT. This 

would require the duration of each wavelet governed by the windowing function to be a 

constant by having 
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1
1

1 minmax
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ff
ff

n
   A1.52 

Having covered sufficient background on wavelets we can now examine the characteristics 

of the CWT. All the following CWT will be applied to the simulated output signal first 

shown in Fig. A1.7. A Gray scale will be used for presenting the CWT where dark will 

relate to the higher positive magnitudes of the CWT coefficients. All wavelet sets will 

comprise 120 scaled wavelets that are derived from the unscaled mother wavelet. The 

Hilbert transform instantaneous frequency of the signal v(t) will be included on frequency 

time (f,b) plots to help interpretation of the representations. To aid the understanding of the 

wavelet transform a comparison will be made between the CWT coefficients that result from 

using either real only or complex wavelets. For a family of real only Morlet wavelets, with 

an unscaled centre frequency of 0=7.5 rads/s, the coefficients of the CWT Wvr(f,b) are 

shown in Fig A1.35. It is rather difficult to relate any of the real only CWT representation to 

the signal v(t) or the instantaneous frequency obtained by the Hilbert transform technique. 

This is because the real CWT is sensitive to phase, such that much of the similarity of the 

signal to the analysing wavelet will be lost if the two are 90o out of phase. The representation 

is also complicated by the real CWT generating both positive and negative correlation 

coefficients. The square of the modulus of CWT coefficients |Wv(f,b)|2 that result from a 

family of complex Morlet wavelets ( 0=7.5 rads/s) are displayed in Fig. A1.36. This type of 

representation is commonly known as a scalogram [Hlawatsh (1992)] and describes the 

energy distribution of the signal. Comparing Fig. A1.36 and Fig. A1.35 it can be seen that 

the scalogram representation greatly improves the interpretation of the features of a signal 

when viewed in frequency time. 

A closer examination of the CWT coefficients for a 37kHz real and a complex wavelet are 

shown in Fig. A1.39. The coefficients v f(b) for the real wavelet are characterised by being 

an oscillatory function which can be considered to be the output of a band pass filter 

described by the wavelet r(ft/f0), when the input is v(t) which is shown in Fig. A1.37. The 

band pass nature of the real wavelets is clearer when observing the FFT modulus of the real 

wavelet coefficients that are shown in Fig A1.40 which should be compared to the FFT 

modulus of v(t) shown in Fig A1.38. Shown in Fig. A1.39 are the coefficients |v f|(b) for the 

complex wavelet. Comparing the complex with the real coefficients reveals that |v f|(b)

represents the envelope of the band passed signal. For further appreciation the real and 

complex coefficients for 54kHz and 83kHz frequencies are shown in Fig. A1.41 through to 

Fig. A1.44. 
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Since a family of wavelets was shown to decompose a signal into its different frequency 

bands, it follows that for an orthogonal set of wavelets the relationship with the Fourier 

transform and the scalogram [Young 1992] is 

dVdbdbWv
22

,     A1.53 

Even for a dense set of wavelets whose bandwidths overlap such that there is redundancy in 

the frequency domain, equation A1.53 remains a good approximation. This is verified in Fig 

A1.45 which shows the FFT of signal v(t) and the frequency spectrum computed by the 

CWT for the unscaled wavelet centre frequencies of 0=3.8 and 6.3 rad/s. For the broad 

band set of wavelets ( 0=3.8 rad/s), there is a lot of redundancy so the spectra appears 

smoother. For the set of narrower band wavelets ( 0=6.3 rad/s) the profile of the spectra 

improves since the set tends towards orthogonality. Thus with narrower band wavelets you 

will get better identification of frequency components. However, since narrower band 

wavelets will be of longer duration there will be some degradation in the location of these 

frequency components in the time domain. This highlights that appropriate wavelets should 

be chosen and that because of the uncertainty principle, we have to settle for a trade off 

between frequency and time location.  

Relating Parseval’s theorem to equation A1.53 suggests that we can integrate over frequency 

to obtain the signal envelope given by 

dbWv
C

bv
2

,
1

2

1~     A1.54 

Fig A1.37 shows the envelope of the input signal v(t) evaluated by equation A1.54 for a set 

of wavelets where 0=7.5 rad/s, fmin=10kHz and fmin=120kHz. This is compared to the 

envelope obtained by the modulus of the analytic signal given by equation A1.32. The 

techniques show good agreement in the higher frequency region but both struggle to 

approximate the envelope for the early low frequency part of v(t).

In the scalogram it is useful to observe the points in time-frequency where the maximum 

coefficients occur. When these peaks form a function of time or frequency they are known as 

ridge points [Mallet (1998)]. The coefficients at the ridge points can be shown to be 

sufficient alone to define the signal [Guillemain and Kronland-Martinet (1996)]. Abbate et al 
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[1999] suggest that since the ridge points for this application are related to high 

concentrations of acoustic energy they are natural candidates for the characterisation of 

ultrasonic signals. Two straightforward processes can be employed to obtain ridge point 

functions. If we stand on the time axis and look into the scalogram plot, the ridges in the 

CWT Wv(b,fi)  will correspond to the instantaneous centre frequency fi as a function of time 

b, which we shall call B ridge points. Fig. A1.46 shows the B ridge points of the CWT in 

Fig. A1.36. It is compared to the instantaneous frequency as obtained by the Hilbert 

transform method. For the CWT method, at low frequencies there is very poor frequency-

time location since here the window width of the analysing wavelet is similar to the duration 

of the signal. As such it is not until the wavelet window duration corresponds to about half 

the signal duration that location is adequate. Since the CWT represents energy density, the 

ridge points can be used to evaluate wave group velocities. For the commonly encountered 

narrower band ultrasonic signals, the poor frequency-time location becomes an issue, which 

prevents the technique from providing useful results. 

An alternative technique for extracting the group velocity from dispersive signals is 

suggested by the author. Similar to measuring time delays by the maximums in the time 

domain signal envelopes it is suggested by the author that we can use the energy envelopes 

as in Fig. A1.39 to evaluate the arrival time of a frequency component. This time we stand 

on the frequency axis and look into the scalogram plot, then the F ridge points will 

correspond to the time at which the most significant magnitude of a frequency component 

occurs. Fig A1.46 shows the F ridge points for the CWT in Fig. A1.36. It can be seen that 

there is now much better correlation in the low frequency region to the instantaneous 

frequency obtained by the Hilbert transform method. For the F ridge point technique to be of 

use for group velocity evaluation, any superimposed following modes or reflections should 

be of lower energy than the out going mode of interest. When this is the case if we stand on 

the frequency axis and look into the scalogram, the mountainous regions related to the CWT 

coefficients of the wave packet of interest will obscure the less significant following modes 

or reflections. Other than this straight forward case, Abbate et al [1999] and Veroy et al 

[1999] suggest that algorithms are required to compare time delays between similar modes 

for the case when modes overlap in the time domain. 

For initial validation of the F ridge point technique, the group velocity was extracted from 

the straight forward input and output signals shown in Fig A1.5 and Fig. A1.7 respectively. 

Two suitable families of wavelets where chosen that would provide good results over the 

10kHz to 100kHz frequency range. One set comprised of 120 relatively narrow band 

constant Q wavelets (CWT) using an unscaled centre frequency of 0=7.5 rad/s. The other 
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set comprised of 120 constant bandwidth wavelets (STFT) using an unscaled centre 

frequency of 0=2.2 rad/s. To extract the group velocity, the time delay dtf between the F 

ridge points for the input and output signal is obtained in a similar manner to the Hilbert 

transform technique shown in Fig. A1.29. Group velocity is then obtained by equation 

A1.35. For the CWT and STFT analysis the extracted group velocities are shown in Fig. 

A1.47. Neither set of wavelets are able to extract the velocity for frequencies below about 

10KHz since the wavelet duration in this region is greater than the duration of the signals 

which results in poor time location. From 10kHz to the L(0,2) cut off frequency the 

extracted group velocity from both sets of wavelets agrees with the Disperse prediction for 

the L(0,1) mode. Beyond about 70kHz where there is relatively little energy in the signal, 

what mode an analysis picks up on is related to the bandwidth and duration of the analysing 

wavelets. In this frequency region, the velocity obtained using the STFT follows the L(0,2) 

mode while that from the CWT tends to a mean of all modes present. When compared to the 

results from the Hilbert transform technique shown in Fig.A1.30 the F ridge point method 

proves a marked improvement. The technique was then applied to the noisy signals shown in 

Fig. A1.9 and Fig. A1.11. The extracted group velocity for these signals is shown in Fig 

A1.48. The extraction of group velocity for the noisy signals is relatively unaffected by the 

presence of noise. In the low frequency region, the choice of bandwidth for the STFT 

wavelets proves better choice than that for the CWT. Unlike the F ridge point technique, 

neither the Hilbert transform nor the established phase spectrum techniques were able to 

extract the group velocity from the noisy signals. Finally the F ridge point technique is 

applied to the input signal shown in Fig A1.5 and the output signal with the simulated 

reflection shown in Fig. A1.15. The extracted group velocity for these signals is shown in 

Fig A1.49. Here again a better choice of band width for the STFT has been made. The 

reason that the STFT set of wavelets gives better results over the complete frequency range 

considered is that its wavelets are more broadband for low frequencies giving improved time 

location and narrower banded for high frequencies giving improved frequency location. For 

the STFT wavelets the F ridge point technique gives much improved results compared to 

those from the Hilbert transform technique shown in FigA1.31. The established phase 

spectrum method was not able to extract the group velocities for these signals due to the 

severe oscillations in the extracted phase velocity shown in Fig. A1.22. 

Before leaving the wavelet investigation, another use for the scalogram is signal 

enhancement, which is possible by filtering the signal in frequency time. The author initially 

presumed that a new technique was being developed but it was later discovered that it had 

already been reported [Moubarik et al (1993)]. The technique for filtering typical signals 

found in NDT begins by first computing the complex CWT and displaying this as a 

scalogram. Next all wavelet coefficients corresponding to an energy level smaller than say –
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30dB are discarded and the signal is then reconstructed from the remaining coefficients by 

the inverse WT using equation A1.41. This energy thresholding in the time frequency 

domain acts locally on unwanted components unlike time domain averaging or frequency 

domain filtering which acts globally. To illustrate, Fig. A1.50 shows the scalogram where 

the coefficients 30dB down from the maximum of the scalogram shown in Fig. A1. 36 have 

been discarded. The inverse wavelet transform IWT is then performed to reconstruct the 

signal of v(t). When performing the IWT, the coefficient C  in equation A1.41 is assessed by 

evaluating the energy conservation given by equation A1.43. The reconstructed filtered 

signal and the Modulus of the corresponding FFT are shown in Fig. A1.51 and Fig. A1.52 

respectively. The filtering process has removed the presence of the lower energy L(0,2) and 

L(0,3) modes without chopping out the higher frequency components belonging to the 

dominant L(0,1) mode. By being more selective rather than just filtering everything below 

30dB down, the low frequency content of L(0,1) could have been protected. 

A1.5 Conclusion 

Signal processing techniques were investigated that might extract the wave velocities from 

the dispersive signals encountered in chapter 4. The established phase spectrum technique 

was described and two techniques developed by the author were presented. For validation of 

techniques a set of simulated signals obtained from a finite element model were constructed.

The phase spectrum technique provides the most reliable results for signals that are 

noiseless, and where only one wave packet propagates. Moving away from the ideal, the 

technique begins to struggle and group velocity evaluation from the extracted phase velocity 

becomes impractical.  

A technique was developed by the author to extract group velocity from the signal 

instantaneous frequencies obtained via the Hilbert transform and analytic signal. The 

technique suffers if Hilbert transform of the signals to be analysed is not simply applicable. 

Additionally, similar to the phase spectrum technique it is unable to extract group velocities 

for noisy signals. However, where a slower wave packet is superimposed in the later portion 

of a signal the technique is still able to analyse the earlier uncontaminated portion.

As an alternative a technique was developed by the author that employed the wavelet 

transform. The so called F ridge point technique locates the time at which the most 

significant magnitude of a frequency component occurs. These times are compared for an 
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input and output signal and the difference gives the time delay and hence group velocity for 

that frequency component. The developed F ridge point method was shown to be much less 

sensitive to the presence of noise or other lower energy wave packets. Additionally, the 

technique does not suffer from the poor frequency time location that occurs with a similar 

technique reported by [Abbate et al 1999]. 

All three techniques investigated suffer from some limitations, there being no universal 

panacea. However, some combination of these methods should enable a complete analysis of 

dispersive signals such as those encountered in Chapter 4. 
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Figure A1.1. Example of a rectangular 
windowed linear chirp. 

Figure A1.2. Modulus of FFT for rectangular 
windowed linear chirp.
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Figure A1.3. Example of Hanning windowed 
Linear chirp.

Figure A1.4. Modulus of FFT of Hanning 
windowed linear chirp.
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Figure A1.5. Input signal (fc=40kHz) applied 
to bar end. 

Figure A1.6. Modulus of the FFT of signal 
shown in Fig. A1.5. 
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Figure A1.7. Signal (fc=40kHz) monitored  at 
500mm from bar end. 

Figure A1.8. Modulus of the FFT of signal 
shown in Fig. A1.7. 
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Figure A1.9. Input signal (fc=40kHz)  at bar 
end with added noise. 

Figure A1.10. Modulus of the FFT of noisy 
signal shown in Fig. A1.9. 
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Figure A1.11. Signal (fc=40kHz) monitored 
at 500mm from bar end with added noise. 

Figure A1.12. Modulus of the FFT of noisy 
signal shown in Fig. A1.11. 
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Figure A1.13. Noise content of output signal 
shown in Fig. A1.11. 

Figure A1.14. Modulus of the FFT of the 
noise content of signal shown in Fig. A1.11. 
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Figure A1.15. Signal (fc=40kHz) monitored 
at 250mm from bar end with inverse of signal 
monitored at 750mm  to simulate a reflection. 

Figure A1.16. Modulus of the FFT of the 
signal shown in Fig. A1.15. 
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Figure A1.17. Phase spectra of the cross 
spectrum relative to the simulated signals 
shown in Fig A1.5 and Fig. A1.7. 

Figure A1.18. Assembled continuous phase 
spectra of that shown in Fig. A1.17. 
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Figure A1.19. Phase velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.7. Phase 
velocities for first three longitudinal modes 
predicted by Disperse.

Figure A1.20. Group velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.7. 
Group velocities for first three longitudinal 
modes predicted by Disperse.
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Figure A1.21. Phase velocity extracted from 
noisy signals shown in Fig A1.9 and Fig. A1.11 
with phase velocities for first three longitudinal 
modes predicted by Disperse.

Figure A1.22. Phase velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.15 with 
phase velocities for first three longitudinal 
modes predicted by Disperse.
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Figure A1.23. Hilbert transform of input 
signal shown in Fig. A1.5. 

Figure A1.24. Hilbert transform of output 
signal shown in Fig. A1.7. 
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Figure A1.25. Continuous instantaneous 
phase of input signal shown in Fig. A1.5. 

Figure A1.26. Continuous instantaneous 
phase of output signal shown in Fig. A1.7. 
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Figure A1.27. Instantaneous frequency of 
input signal shown in Fig. A1.5. 

Figure A1.28. Instantaneous frequency of 
output signal shown in Fig. A1.7. 



236

0

20

40

60

80

0 0.1 0.2 0.3 0.4

Time (ms)

f
dt f

f i {u (t )}

f i {v (t )}

Determination of dt f

uncertain in this region

Figure A1.29 Evaluation of the time delay dtf at frequency f from the instantaneous 
frequencies fi{u(t)} and fi{v(t)}.
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Figure A1.30. Group velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.7 using 
the Hilbert transform technique. Group 
velocities for first three longitudinal modes 
predicted by Disperse.

Figure A1.31. Group velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.15 using 
the Hilbert transform technique. Group 
velocities for first three longitudinal modes 
predicted by Disperse.



237

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 1 2 3 4

time (s)

am
pl

it
ud

e

imaginary

real

Figure A1.32. Real and imaginary Morlet wavelets for a=1 and  0=5.
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Figure A1.33.  Time domain of real Morlet wavelets where 0=3 rads/s and translation b=0 for scales  
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Figure A1.34. Modulus of FFT of real Morlet wavelets (  0=3 rads/s) for scales  a=1, 0.5 and 0.25. 
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Figure A1.35.  Coefficients of CWT of signal v(t) using real only part of Morlet wavelets  
(  0=7.5 rads/s). Grey scale - grey zero, black max. negative, white max. positive. Hilbert 
transform instantaneous frequency included to help interpretation of representation. 
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Figure A1.36.  Scalogram (modulus of  CWT) of v(t) using complex Morlet wavelets (  0=7.5
rads/s). Grey scale- black max., white min. Hilbert transform instantaneous frequency 
included to help interpretation of representation. 
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Figure A1.37. Monitored signal v(t) first 
shown in Fig. A1.5 along with envelopes 
established from the Analytic signal and 
Wavelet transform. 

Figure A1.38. Modulus of the FFT of signal 
v(t) shown in Fig. A1.37. 
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Figure A1.39. Wavelet transform coefficients 
(fa=37kHz) of signal v(t) for real (oscillatory 
function) and complex (envelope) Morlet 
wavelets.

Figure A1.40. Modulus of the FFT for the 
real Morlet wavelet coefficients shown in 
Fig. A1.39. 
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Figure A1.41. Wavelet transform coefficients 
(fa=54kHz) of signal v(t) for real (oscillatory) 
and complex (envelope) Morlet wavelets. 

Figure A1.42. Modulus of the FFT for the 
real Morlet wavelet coefficients shown in 
Fig. A1.41. 
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Figure A1.43. Wavelet transform coefficients 
(fa=83kHz) of signal v(t) for real (oscillatory) 
and complex (envelope) Morlet wavelets. 

Figure A1.44. Modulus of the FFT for the 
real Morlet wavelet coefficients shown in 
Fig. A1.43. 
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Figure A1.47. Group velocity extracted from 
signals shown in Fig A1.5 and Fig. A1.7 using 
the CWT and STFT technique. Disperse 
predictions for first three longitudinal modes 
shown as dots.

Figure A1.48. Group velocity extracted from 
the noisy signals shown in Fig A1.9 and Fig. 
A1.11 using the CWT and STFT technique. 

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

Frequency (kHz)

L(0,1)

Extracted group 
velocity (wavelet)

Extracted group 
velocity (STFT)

Figure A1.49. Group velocity extracted from 
the output signal with simulated reflection 
shown in Fig A1.15 using the CWT and STFT 
technique.
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Figure A1.50.  CWT shown in Fig. A1.36 with coefficients 30dB down from the maximum 
removed. Instantaneous frequency obtained by Hilbert transform shown to aid interpretation. 
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Figure A1.51. Inverse Wavelet transform 
coefficients of the energy filtered CWT 
shown in Fig A1.50. 

Figure A1.52. Modulus of the FFT for the 
energy filtered signal sown in Fig. A1.51. 
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Appendix 2 

Component drawings for protype membrane shoes 
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Figure A2.1a.   Clamp plate 
                         Aluminum. Alloy 1 off. 

Figure A2.1b.   Body. 
                          Aluminum. Alloy 1 off. 

4 off D3.5
csk 68.0PCD

D50±0.2

4 off D3.5
68.0PCD

75.0±0.5

3.0±0.2

D75±0.5

2.5±0.2

maintain polished
surface finish

10 wd x 1.5 dp
4 off slots

Y

Y

ucut 55±0.2

D60.0±0.5

ucut 2.8±0.2

Figure A2.1c. Transducer holder  
                        Aluminum. Alloy 1 off. 

Figure A2.1d.  Plate  
                        Perspex 1 off. 

Figure A2.1. Component drawings (not to scale) for prototype membrane shoes to fit the 
standard PUNDIT 54kHz transducers. 
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Figure A2.2. Component drawings (not to scale) for prototype membrane shoes to fit the 
standard PUNDIT 83kHz transducers. 
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